Advertisement

Response of benthic algae to environmental conditions in an urban lake recovered from eutrophication, China

  • Tao Wang
  • Qing Wang
  • Shuang Xia
  • Chunlan Yan
  • Guofeng PeiEmail author
Article

Abstract

Benthic algae communities dominate the primary production in littoral zone of shallow lake. To understand the long-term effect of alteration in the composition of benthic algae community assemblage in such as a lake in China, we analyzed the benthic algae developments and indicators in the Donghu Lake in Wuhan, central China in 2004 and 2014. We compared the benthic algae biomass, compositions, and species richness of aquatic macrophytes and the changes of primary physicochemical parameters. The results show that in the 10-year period, chl a and conductivity declined significantly but nutrient level of the whole lake remained largely stable. The benthic algae biomass doubled and the relative proportion of green algae increased, whereas the benthic diatom ratio decreased. The benthic diatom assemblages and taxa differed in a number of ways, showing more epiphytic diatom species, and the relative abundance and species richness changed markedly. The number of aquatic macrophyte species increased from 3 in 2004 to 15 in 2014, presenting a remarkable recovery from previous eutrophication conditions. The changes of water level, chl a, and conductivity played a crucial role in governing aquatic macrophytes re-colonization in the littoral zones in the period. The ecological characteristics of littoral benthic diatoms reflect habitat coupling as indicated by redundancy analysis. Therefore, the close link between benthic algae and macrophyte recovery demonstrates that the benthic algae metrics are much more useful than nutrient levels to quantify the process of restoration in the lake.

Keyword

benthic algae benthic diatom lake restoration aquatic macrophyte water level 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albay M, Akçaalan R. 2008. Effects of water quality and hydrologic drivers on periphyton colonization on Sparganium erectum in two Turkish lakes with different mixing regimes, Environ. Monit. Assess., 146(1–3): 171–181.CrossRefGoogle Scholar
  2. APHA. 2012. Standard Methods for the Examination of Water and Wastewater. 22nd edn. American Public Health Association, Washington DC.Google Scholar
  3. Beklioğlu M, Bucak T, Coppens J, Bezirci G, Tavşanoğlu Ü N, Çakıroğlu A. İ, Levi E E, Erdoğan Ş, Filiz N, Özkan K, Özen A. 2017. Restoration of eutrophic lakes with fluctuating water levels: a 20-year monitoring study of two inter-connected lakes, Water, 9(2): 127,  https://doi.org/10.3390/w9020127.CrossRefGoogle Scholar
  4. Bennion H, Kelly M G, Juggins S, Yallop M, Burgess A, Jamieson J, Krokowski J. 2014. Assessment of ecological status in UK lakes using benthic diatoms, Freshw. Sci., 33(2): 639–654.CrossRefGoogle Scholar
  5. Bennion H, Sayer C D, Tibby J, Carrick H J. 2010.Diatoms as indicators of environmental change in shallow lakes. In: Smol J P, Stoermer E F eds. The Diatoms: Applications for the Environmental and Earth Sciences. 2nd edn. Cambridge University Press, Cambridge. p.152–173.CrossRefGoogle Scholar
  6. Bennion H, Simpson G L, Goldsmith B J. 2015. Assessing degradation and recovery pathways in lakes impacted by eutrophication using the sediment record, Front. Ecol. Evol., 3: 94.CrossRefGoogle Scholar
  7. Cantonati M, Lowe R L. 2014. Lake benthic algae: toward an understanding of their ecology, Freshw. Sci., 33(2): 475–486.CrossRefGoogle Scholar
  8. Chick J H, Geddes P, Trexler J C. 2008. Periphyton mat structure mediates trophic interactions in a subtropical marsh, Wetlands, 28(2): 378–389.CrossRefGoogle Scholar
  9. Coops H, Beklioglu M, Crisman T L. 2003. The role of water-level fluctuations in shallow lake ecosystems — workshop conclusions, Hydrobiologia, 506–509(1–3): 23–27.CrossRefGoogle Scholar
  10. De Oliveria D E, Ferragut C, De Campos Bicudo D. 2010. Relationships between environmental factors, periphyton biomass and nutrient content in Garças reservoir, a hypereutrophic tropical reservoir in Southeastern Brazil, Lakes Reserv. Res. Manage., 15(2): 129–137.CrossRefGoogle Scholar
  11. DeNicola D M, Kelly M. 2014. Role of periphyton in ecological assessment of lakes, Freshw. Sci., 33(2): 619–638.CrossRefGoogle Scholar
  12. Gaiser E E, McCormick P V, Hagerthey S E, Gottlieb A D. 2011. Landscape patterns of periphyton in the Florida everglades, Crit. Rev. Environ. Sci. Technol., 41(S1): 92–120.CrossRefGoogle Scholar
  13. Gaiser E. 2009. Periphyton as an indicator of restoration in the Florida everglades, Ecol. Indic., 9(S6): S37–S45.CrossRefGoogle Scholar
  14. Gette-Bouvarot M, Mermillod-Blondin F, Lemoine D, Delolme C, Danjean M, Etienne L, Volatier L. 2015. The potential control of benthic biofilm growth by macrophytes — a mesocosm approach, Ecol. Eng., 75: 178–186.CrossRefGoogle Scholar
  15. Gottschalk S, Kahlert M. 2012. Shifts in taxonomical and guild composition of littoral diatom assemblages along environmental gradients, Hydrobiologia, 694(1): 41–56.CrossRefGoogle Scholar
  16. Hadley K R, Douglas M S V, Lim D, Smol J P. 2013. Diatom assemblages and limnological variables from 40 lakes and ponds on Bathurst Island and neighboring high arctic islands, Int. Rev. Hydrobiol, 98(1): 44–59.CrossRefGoogle Scholar
  17. He Y, Liu G X, Pei G F. 2016. Effect of artificial macrocosms on water characteristics and benthic diatom communities in Donghu Lake, China, J. Freshw. Ecol., 31(4): 533–542.CrossRefGoogle Scholar
  18. Hill W R, Knight A W. 1988. Nutrient and light limitation of algae in two Northern California streams, J. Phycol., 24(2): 125–132.CrossRefGoogle Scholar
  19. Hu H J, Li Y Y, Wei Y X, Zhu H Z, Chen J Y, & Shi Z X. 1980. Freshwater algae of China. Shanghai Scientific & Technical Publishers, Shanghai, China. p.1–525. (in Chinese)Google Scholar
  20. Irfanullah H, Moss B. 2005. A filamentous green algae-dominated temperate shallow lake: variations on the theme of clear-water stable states? Arch Hydrobiol., 163(1): 25–47.CrossRefGoogle Scholar
  21. Kelly M G, King L, Jones R I, Barker P A, Jamieson B J. 2008. Validation of diatoms as proxies for phytobenthos when assessing ecological status in lakes, Hydrobiologia, 610(1): 125–129.CrossRefGoogle Scholar
  22. Krammer K, Lange-Bertalot H. 1986. Bacillariophyceae. 1. Teil: naviculaceae. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D eds. Süßwasserflora von Mitteleuropa, Band 2/1. Gustav Fischer Verlag, Stuttgart.Google Scholar
  23. Krammer K, Lange-Bertalot H. 1988. Bacillariophyceae. 2. Teil: bacillariaceae, epithemiaceae, surirellaceae. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D eds. Süßwasserflora von Mitteleuropa, Band 2/2. Gustav Fischer Verlag, Stuttgart.Google Scholar
  24. Krammer K, Lange-Bertalot H. 1991a. Bacillariophyceae. 3. Teil: centrales, fragilariaceae, eunotiaceae. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D eds. Süßwasserflora von Mitteleuropa, Band 2/3. Gustav Fischer Verlag, Stuttgart.Google Scholar
  25. Krammer K, Lange-Bertalot H. 1991b. Bacillariophyceae. 4. Teil: achnanthaceae, achnanthes and gomphonema. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D eds. Süßwasserflora von Mitteleuropa, Band 2/4. Gustav Fischer Verlag, Stuttgart.Google Scholar
  26. Ledger M E, Hildrew A G. 2002. Temporal and spatial variation in the epilithic biofilm of an acid stream, Freshw. Biol., 40(4): 655–670.CrossRefGoogle Scholar
  27. Levi E E, Bezirci G, Çakrroğlu A İ, Turner S, Bennion H, Kernan M, Jeppesen E, Beklioğlu M. 2016. Multi-proxy palaeoecological responses to water-level fluctuations in three shallow Turkish lakes, Palaeogeogr. Palaeoclimatol. Palaeoecol, 449: 553–566.CrossRefGoogle Scholar
  28. Lim D S S, Smol J P, Douglas M S V. 2007. Diatom assemblages and their relationships to lakewater nitrogen levels and other limnological variables from 36 lakes and ponds on Banks Island, N.W.T., Canadian Arctic, Hydrobiologia, 586(1): 191–211.CrossRefGoogle Scholar
  29. Liu Y, Shen J Z. 2008. Biological evaluation of algae in water quality monitoring applications, Reserv. Fish., 28(4): 5–7. (in Chinese)Google Scholar
  30. Liu Z W, Wang Y F, Wang Q Y, Zhang H. 2014. Water body nutrients content change trend analysis in Lake Donghu, Wuhan, Sci. Technol. Innov. Her., (31): 115–116. (in Chinese)Google Scholar
  31. Logan B, Taffs K H. 2013. Relationship between diatoms and water quality (TN, TP) in sub-tropical east Australian estuaries, J. Paleolimnol., 50(1): 123–137.CrossRefGoogle Scholar
  32. Marker A F H, Collett G D. 1997. Spatial and temporal characteristics of algae in the River Great Ouse. II. The epiphytic algal flora, Regul. River., 13(3): 235–244.CrossRefGoogle Scholar
  33. Paillisson J M, Marion L. 2011. Water level fluctuations for managing excessive plant biomass in shallow lakes, Ecol. Eng, 37(2): 241–247.CrossRefGoogle Scholar
  34. Pei G F, Liu G X, Hu Z Y. 2007. Spatial and temporal variation of benthic algal communities in the littoral zone of Lake Donghu, Acta Hydrobiol. Sin., 31(6): 836–842. (in Chinese with English abstract)Google Scholar
  35. Pei G F, Wang Q, Liu G X. 2015. The role of periphyton in phosphorus retention in shallow lakes with different trophic status, China, Aquat. Bot., 125: 17–22.CrossRefGoogle Scholar
  36. Poikane S, Kelly M, Cantonati M. 2016. Benthic algal assessment of ecological status in European lakes and rivers: challenges and opportunities, Sci. Total Environ., 568: 603–613.CrossRefGoogle Scholar
  37. Poulíčková A, Duchoslav M, Dokulil M. 2004. Littoral diatom assemblages as bioindicators of lake trophic status: a case study from perialpine lakes in Austria, Eur. J. Phycol., 39(2): 143–152.CrossRefGoogle Scholar
  38. Prygiel J, Coste M. 2000. Guide Mé thodologique Pour la Mise en Oeuvre de l’Indice Biologique Diatomées NF T 90-354. Agence de I’Eau Artois- Picardie-Cemagref, Bordeaux. France. 134p.Google Scholar
  39. Reavie E D, Smol J P. 1997. Diatom-based model to infer past littoral habitat characteristics in the St. Lawrence River. J, Great Lakes Res., 23(3): 339–348.CrossRefGoogle Scholar
  40. Rimet F, Bouchez A, Montuelle B. 2015. Benthic diatoms and phytoplankton to assess nutrients in a large lake: complementarity of their use in Lake Geneva (France-Switzerland), Ecol. Indic., 53: 231–239.CrossRefGoogle Scholar
  41. Roberts E, Kroker J, Körner S, Nicklisch A. 2003. The role of periphyton during the re-colonization of a shallow lake with submerged macrophytes, Hydrobiologia, 506–509(1–3): 525–530.CrossRefGoogle Scholar
  42. Rodusky A J. 2010. The influence of large water level fluctuations and hurricanes on periphyton and associated nutrient storage in subtropical Lake Okeechobee, USA, Aquat. Ecol., 44(4): 797–815.CrossRefGoogle Scholar
  43. Simkhada B, Jüttner I, Chimonides P J. 2006. Diatoms in lowland ponds of Koshi Tappu, Eastern Nepal — relationships with chemical and habitat characteristics. Int. Rev, Hydrobiol., 91(6): 574–593.Google Scholar
  44. Smol J P, Stoermer E F. 2010. The Diatoms: Applications for the Environmental and Earth Sciences. 2nd edn. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  45. Stenger-Kovács C, Buczkó K, Hajnal É, Padisák J. 2007. Epiphytic, littoral diatoms as bioindicators of shallow lake trophic status: Trophic diatom index for lakes (TDIL) developed in Hungary, Hydrobiologia, 589(1): 141–154.CrossRefGoogle Scholar
  46. Stevenson J. 2014. Ecological assessments with algae: a review and synthesis, J. Phycol., 50(3): 437–461.CrossRefGoogle Scholar
  47. Tornés E, Cambra J, Gomà J, Leira M, Ortiz R, Sabater S. 2007. Indicator taxa of benthic diatom communities: a case study in Mediterranean streams. Ann. Limnol. -Int. J. Lim., 43(1): 1–11.CrossRefGoogle Scholar
  48. Triest L, Lung’ayia H, Ndiritu G, Beyene A. 2012. Epilithic diatoms as indicators in tropical African rivers (Lake Victoria catchment), Hydrobiologia, 695(1): 343–360.CrossRefGoogle Scholar
  49. Tunca H, Sevindik T O, Bal D N, Arabaci S. 2014. Community structure of epiphytic algae on three different macrophytes at Acarlar floodplain forest (Northern Turkey), Chin. J. Oceanol. Limnol, 32(4): 845–857.CrossRefGoogle Scholar
  50. Vadeboncoeur Y, Jeppesen E, Zanden M J V, Schierup H H, Christoffersen K, Lodge D M. 2003. From Greenland to green Lakes: cultural eutrophication and the loss of benthic pathways in lakes, Limnol. Oceanogr., 48(4): 1 408–1 418.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tao Wang
    • 1
  • Qing Wang
    • 1
  • Shuang Xia
    • 1
  • Chunlan Yan
    • 1
  • Guofeng Pei
    • 1
    Email author
  1. 1.Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of ChinaSouth-Central University for NationalitiesWuhanChina

Personalised recommendations