Advertisement

Plate subduction, oxygen fugacity, and mineralization

  • He Liu
  • Renqiang Liao
  • Lipeng Zhang
  • Congying Li
  • Weidong SunEmail author
Article
  • 8 Downloads

Abstract

Plate subduction is the largest natural factory that processes elements, which controls recycling and mineralization of a variety of elements. There are three major ore deposit belts in the world: the circum-Pacific, the central Asian, and the Tethys belts. All the three belts are closely associated with plate subductions, the mechanism remains obscure. We approached this problem from systematic studies on the behaviours of elements during geologic processes. This contribution summaries the recent progress of our research group. Our results suggest that porphyry Cu deposits form through partial melting of subducted young oceanic crust under oxygen fugacities higher than ΔFMQ ∼+1.5, which is promoted after the elevation of atmospheric oxygen at ca. 550 Ma. Tin deposits are associated with reducing magmatic rocks formed as a consequence of slab rollback. The Neo-Tethys tectonic regime hosts more than 60% of the world’s total Sn reserves. This is due to the reducing environment formed during the subduction of organic rich sediments. For the same reason, porphyry Cu deposits formed in the late stages during the closure of the Neo-Tethys Ocean. Tungsten deposits are also controlled by slab rollback, but is not so sensitive to oxygen fugacity. Subduction related W/Sn deposits are mostly accompanied by abundant accessory fluorites due to the breakdown of phengite and apatite. Decomposition of phengite is also significant for hard rock lithium deposits, whereas orogenic belt resulted from plate subduction promote the formation of Li brine deposits. Cretaceous red bed basins near the Nanling region are favorable for Li brines. Both Mo and Re are enriched in the oxidation-reduction cycle during surface processes, and may get further enriched once Mo-, Re-enriched sediments are subducted and involved in magmatism. During plate subduction, Mo and Re fractionate from each other. Molybdenum is mainly hosted in porphyry Mo deposits and to a less extent, porphyry Cu-Mo deposits, whereas Re is predominantly hosted in porphyry Cu-Mo deposits and sedimentary sulfide deposits.

Keyword

plate subduction oxygen fugacity ore deposits geochemical behaviors subduction factory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballard J R, Palin J M, Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile, Contributions to Mineralogy and Petrology, 144(3): 347–364.CrossRefGoogle Scholar
  2. Ballhaus C. 1993. Redox states of lithospheric and asthenospheric upper mantle, Contributions to Mineralogy and Petrology, 114(3): 331–348.CrossRefGoogle Scholar
  3. Brandon A D, Draper D S. 1996. Constraints on the origin of the oxidation state of mantle overlying subduction zones: an example from Simcoe, Washington, USA, Geochimica et Cosmochimica Acta, 60(10): 1 739–1 749.CrossRefGoogle Scholar
  4. Carlile J C, Mitchell A H G. 1994. Magmatic arcs and associated gold and copper mineralization in Indonesia, Journal of Geochemical Exploration, 50(1–3): 91–142.CrossRefGoogle Scholar
  5. Chen Y J. 2013. The development of continental collision metallogeny and its application, Acta Petrologica Sinica, 29(1): 1–17. (in Chinese with English abstract)Google Scholar
  6. Chen Y X, Li H, Sun W D, Ireland T, Tian X F, Hu Y B, Yang W B, Chen C, Xu D R. 2016. Generation of Late Mesozoic Qianlishan A2-type granite in Nanling Range, South China: implications for Shizhuyuan W-Sn mineralization and tectonic evolution, Lithos, 266–267: 435–452.CrossRefGoogle Scholar
  7. Cheng Y B, Mao J W, Liu P. 2016. Geodynamic setting of Late Cretaceous Sn-W mineralization in southeastern Yunnan and northeastern Vietnam, Solid Earth Sciences, 1(3): 79–88.CrossRefGoogle Scholar
  8. Chiaradia M, Fontboté L, Beate B. 2004. Cenozoic continental arc magmatism and associated mineralization in Ecuador, Mineralium Deposita, 39(2): 204–222.CrossRefGoogle Scholar
  9. Chiaradia M. 2014. Copper enrichment in arc magmas controlled by overriding plate thickness, Nature Geoscience, 7(1): 43–46.CrossRefGoogle Scholar
  10. Cooke D R, Hollings P, Walsh J L. 2005. Giant porphyry deposits: characteristics, distribution, and tectonic controls, Economic Geology, 100(5): 801–818.CrossRefGoogle Scholar
  11. Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere, Nature, 347(6294): 662–665.CrossRefGoogle Scholar
  12. Esser B K, Turekian K K. 1993. The osmium isotopic composition of the continental crust, Geochimica et Cosmochimica Acta, 57(13): 3 093–3 104.CrossRefGoogle Scholar
  13. Evans K A, Elburg M A, Kamenetsky V S. 2012. Oxidation state of subarc mantle, Geology, 40(9): 783–786.CrossRefGoogle Scholar
  14. Feng J R, Mao J W, Pei R F, Zhou Z H, Yang Z X. 2010. SHRIMP zircon U-Pb dating and geochemical characteristics of Laojunshan granite intrusion from the Wazha tungsten deposit, Yunnan Province and their implications for petrogenesis, Acta Petrologica Sinica, 26(3): 845–857. (in Chinese with English abstract)Google Scholar
  15. Guo J, Zhang R Q, Li C Y, Sun W D, Hu Y B, Kang D M, Wu J D. 2018a. Genesis of the Gaosong Sn-Cu deposit, Gejiu district, SW China: constraints from in situ LA-ICP-MS cassiterite U-Pb dating and trace element fingerprinting, Ore Geology Reviews, 92: 627–642.CrossRefGoogle Scholar
  16. Guo J, Zhang R Q, Sun W D, Ling M X, Hu Y B, Wu K, Luo M, Zhang L C. 2018b. Genesis of tin-dominant polymetallic deposits in the Dachang district, South China: insights from cassiterite U-Pb ages and trace element compositions, Ore Geology Reviews, 95: 863–879.CrossRefGoogle Scholar
  17. Hacker B R, Abers G A, Peacock S M. 2003. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents, Journal of Geophysic Research: Solid Earth, 108(B1): 2 029,  https://doi.org/10.1029/2001JB001127.Google Scholar
  18. Hacker B R, Abers G A. 2012. Subduction Factory 5: unusually low Poisson’s ratios in subduction zones from elastic anisotropy of peridotite, Journal of Geophysic Research: Solid Earth, 117(B6): B06308,  https://doi.org/10.1029/2012JB009187.CrossRefGoogle Scholar
  19. Hou Z Q, Yang Z M, Lu Y J, Kemp A, Zheng Y C, Li Q Y, Tang J X, Yang Z S, Duan L F. 2015. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones, Geology, 43(3): 247–250.CrossRefGoogle Scholar
  20. Hou Z Q, Yang Z M, Qu X M, Meng X J, Li Z Q, Beaudoin G, Rui Z Y, Gao Y F, Zaw K. 2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen, Ore Geology Reviews, 36(1–3): 25–51.CrossRefGoogle Scholar
  21. Hou Z Q, Zhang H R. 2015. Geodynamics and metallogeny of the eastern Tethyan metallogenic domain, Ore Geology Reviews, 70: 346–384.CrossRefGoogle Scholar
  22. Hu X Y, Bi X W, Hu R Z, Cai G S, Chen Y W. 2016. Tin partition behavior and implications for the Furong tin ore formation associated with peralkaline intrusive granite in Hunan Province, China, Acta Geochimica, 35(2): 138–147.CrossRefGoogle Scholar
  23. Hua R M, Chen P R, Zhang W L, Yao J M, Lin J F, Zhang Z S, Gu S Y, Liu X D, Qi H W. 2005. Metallogenesis related to mesozoic granitoids in the Nanling Range, South China and their geodynamic settings, Acta Geologica Sinica, 79(6): 810–820.CrossRefGoogle Scholar
  24. Ishihara S, Hashimoto M, Machida M. 2000. Magnetite/ilmenite-series classification and magnetic susceptibility of the Mesozoic-Cenozoic Batholiths in Peru, Resource Geology, 50(2): 123–129.CrossRefGoogle Scholar
  25. Ishihara S, Murakami H. 2006. Fractionated ilmenite-series granites in Southwest Japan: source magma for REE-Sn-W mineralizations, Resource Geology, 56(3): 245–256.CrossRefGoogle Scholar
  26. Ishihara S. 1998. Granitoid series and mineralization in the Circum-Pacific Phanerozoic granitic belts, Resource Geology, 48(4): 219–224.CrossRefGoogle Scholar
  27. Jenkyns H C. 2010. Geochemistry of oceanic anoxic events, Geochemistry, Geophysics, Geosystems, 11(3): Q03004,  https://doi.org/10.1029/2009GC002788.CrossRefGoogle Scholar
  28. Jiang S Y, Ling H F, Zhao K D, Zhu M Y, Yang J H, Chen Y Q. 2008. A discussion on Mo isotopic compositions of black shale and Ni-Mo sulfide bed in the early Cambrian Niutitang Formation in south China, Acta Petrologica et Mineralogica, 27(4): 341–345. (in Chinese with English abstract)Google Scholar
  29. Jiang S Y, Peng N J, Huang L C, Xu Y M, Zhan G L, Dan X H. 2015. Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutang ore-concentrated district in northern Jiangxi Province, Acta Petrologica Sinica, 31(3): 639–655. (in Chinese with English abstract)Google Scholar
  30. Jugo P J, Wilke M, Botcharnikov R E. 2010. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: implications for S speciation and S content as function of oxygen fugacity, Geochimica et Cosmochimica Acta, 74(20): 5 926–5 938.CrossRefGoogle Scholar
  31. Jugo P J. 2009. Sulfur content at sulfide saturation in oxidized magmas, Geology, 37(5): 415–418.CrossRefGoogle Scholar
  32. Kelley K A, Cottrell E. 2009. Water and the oxidation state of subduction zone magmas, Science, 325(5940): 605–607.CrossRefGoogle Scholar
  33. Kesler S E. 1997. Metallogenic evolution of convergent margins: selected ore deposit models, Ore Geology Reviews, 12(3): 153–171.CrossRefGoogle Scholar
  34. Korzhinsky M, Tkachenko S, Shmulovich K, Taran Y A, Steinberg G. 1994. Discovery of a pure rhenium mineral at Kudriavy volcano, Nature, 369(6475): 51–52.CrossRefGoogle Scholar
  35. Lee C T A, Luffi P, Chin E J, Bouchet R, Dasgupta R, Morton D M, Le Roux V, Yin Q Z, Jin D. 2012. Copper systematics in arc magmas and implications for crust-mantle differentiation, Science, 336(6077): 64–68.CrossRefGoogle Scholar
  36. Lehmann B, Harmanto. 1990. Large-scale tin depletion in the Tanjungpandan Tin Granite, Belitung Island, Indonesia, Economic Geology, 85(1): 99–111.CrossRefGoogle Scholar
  37. Lehmann B, Ishihara S, Michel H, Miller J, Rapela C W, Sanchez A, Tistl M, Winkelmann L. 1990. The Bolivian Tin Province and Regional Tin Distribution in the Central Andes; a Reassessment, Economic Geology, 85(5): 1 044–1 058.CrossRefGoogle Scholar
  38. Lehmann B. 1987. Tin granites, geochemical heritage, magmatic differentiation, Geologische Rundschau, 76(1): 177–185.CrossRefGoogle Scholar
  39. Lehmann B. 2011. Regional metal zonation in the Central Andes: tin versus copper. p.17–19.Google Scholar
  40. Li C Y, Wang F Y, Hao X L, Ding X, Zhang H, Ling M X, Zhou J B, Li Y L, Fan W M, Sun W D. 2012a. Formation of the world’s largest molybdenum metallogenic belt: a plate-tectonic perspective on the Qinling molybdenum deposits, International Geology Review, 54(9): 1 093–1 112.CrossRefGoogle Scholar
  41. Li C Y, Zhang H, Wang F Y, Liu J Q, Sun Y L, Hao X L, Li Y L, Sun W D. 2012b. The formation of the Dabaoshan porphyry molybdenum deposit induced by slab rollback, Lithos, 150: 101–110.CrossRefGoogle Scholar
  42. Li C Y, Zhang R Q, Ding X, Ling M X, Fan W M, Sun W D. 2016. Dating cassiterite using laser ablation ICP-MS, Ore Geology Reviews, 72: 313–322.CrossRefGoogle Scholar
  43. Li S G, Yang W, Ke S, Meng X N, Tian H C, Xu L J, He Y S, Huang J, Wang X C, Xia Q K, Sun W D, Yang X Y, Ren Z Y, Wei H Q, Liu Y S, Meng F C, Yan J. 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China, National Science Reviews, 4(1): 111–120.CrossRefGoogle Scholar
  44. Li X M, Zou H P. 2017. Late Cretaceous-Cenozoic exhumation of the southeastern margin of Coastal Mountains, SE China, revealed by fission-track thermochronology: implications for the topographic evolution, Solid Earth Sciences, 2(3): 79–88.CrossRefGoogle Scholar
  45. Liang H Y, Sun W D, Su W C, Zartman R E. 2009b. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration, Economic Geology, 104(4): 587–596.CrossRefGoogle Scholar
  46. Liang J L, Ding X, Sun X M, Zhang Z M, Zhang H, Sun W D. 2009a. Nb/Ta fractionation observed in eclogites from the Chinese Continental Scientific Drilling Project, Chemical Geology, 268(1–2): 27–40.CrossRefGoogle Scholar
  47. Liao M Y, Tao Y, Song X Y, Li Y B, Xiong F. 2016. Study of oxygen fugacity during magma evolution and ore genesis in the Hongge mafic-ultramafic intrusion, the Panxi region, SW China, Acta Geochimica, 35(1): 25–42.CrossRefGoogle Scholar
  48. Lightfoot P C, Evans-Lamswood D. 2015. Structural controls on the primary distribution of mafic-ultramafic intrusions containing Ni-Cu-Co-(PGE) sulfide mineralization in the roots of large igneous provinces, Ore Geology Reviews, 64: 354–386.CrossRefGoogle Scholar
  49. Ling M X, Liu Y L, Williams I S, Teng F Z, Yang X Y, Ding X, Wei G J, Xie L H, Deng W F, Sun W D. 2013. Formation of the world’s largest REE deposit through protracted fluxing of carbonatite by subduction-derived fluids, Scientific Reports, 3: 1776.CrossRefGoogle Scholar
  50. Ling M X, Wang F Y, Ding X, Hu Y H, Zhou J B, Zartman R E, Yang X Y, Sun W D. 2009. Cretaceous Ridge Subduction Along the Lower Yangtse River Belt, Eastern China, Economic Geology, 104(2): 303–321.CrossRefGoogle Scholar
  51. Ludington S, Plumlee G S. 2009. Climax-Type Porphyry Molybdenum Deposits. US Geological Survey Open-File Report 2009–1215, U.S. Department of the Interior, U.S. Geological Survey, Reston, Virginia. 16p.Google Scholar
  52. Lyons T W, Reinhard C T, Planavsky N J. 2014. The rise of oxygen in Earth’s early ocean and atmosphere, Nature, 506(7488): 307–315.CrossRefGoogle Scholar
  53. Mao J W, Chen Y B, Chen M H, Pirajno F. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings, Mineralium Deposita, 48(3): 267–294.CrossRefGoogle Scholar
  54. Mao J W, Pirajno F, Cook N. 2011a. Mesozoic metallogeny in East China and corresponding geodynamic settings — An introduction to the special issue, Ore Geology Reviews, 43(1): 1–7.CrossRefGoogle Scholar
  55. Mao J W, Pirajno F, Xiang J F, Gao J J, Ye H S, Li Y F, Guo B J. 2011b. Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt: characteristics and tectonic settings, Ore Geology Reviews, 43(1): 264–293.CrossRefGoogle Scholar
  56. McDonough W F, Sun S S. 1995. The composition of the earth, Chemical Geology, 120(3–4): 223–253.CrossRefGoogle Scholar
  57. Mlynarczyk M S J, Williams-Jones A E. 2005. The role of collisional tectonics in the metallogeny of the Central Andean tin belt, Earth and Planetary Science Letters, 240(3–4): 656–667.CrossRefGoogle Scholar
  58. Mungall J E. 2002. Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits, Geology, 30(10): 915–918.CrossRefGoogle Scholar
  59. Munk L A, Hynek S A, Bradley D C, Boutt D F, Labay K, Jochens H. 2016. Lithium brines: a global perspective. In: Verplanck P L, Hitzman M W eds. Rare Earth and Critical Elements in Ore Deposits. Society of Economic Geologists, Littleton. p.339–365.Google Scholar
  60. Oyarzun R, Márquez A, Lillo J, López I, Rivera S. 2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism, Mineralium Deposita, 36(8): 794–798.CrossRefGoogle Scholar
  61. Peucker-Ehrenbrink B, Jahn B M. 2001. Rhenium-osmium isotope systematics and platinum group element concentrations: loess and the upper continental crust. Geochemistry, Geophysics, Geosystems, 2(10): 2001GC000172.CrossRefGoogle Scholar
  62. Pollard P J, Taylor R G. 2002. Paragenesis of the Grasberg Cu-Au deposit, Irian Jaya, Indonesia: results from logging section 13, Mineralium Deposita, 37(1): 117–136.CrossRefGoogle Scholar
  63. Richards J P. 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins, Ore Geology Reviews, 40(1): 1–26.CrossRefGoogle Scholar
  64. Rudnick R L, Gao S. 2003. Composition of the continental crust. In: Heinrich D H, Turekian K K eds. Treatise on Geochemistry. Pergamon, Oxford. p.1–64.Google Scholar
  65. Sahoo S K, Planavsky N J, Kendall B, Wang X Q, Shi X Y, Scott C, Anbar A D, Lyons T W, Jiang G Q. 2012. Ocean oxygenation in the wake of the Marinoan glaciation, Nature, 489(7417): 546–549.CrossRefGoogle Scholar
  66. Schmidt M W, Poli S. 2014. Devolatilization during subduction. In: Holland H D, Turekian K K eds. Treatise on Geochemistry. Elsevier, Amsterdam. p.669–701.CrossRefGoogle Scholar
  67. Schmidt M W. 1996. Experimental constraints on recycling of potassium from subducted oceanic crust, Science, 272(5270): 1 927–1 930.CrossRefGoogle Scholar
  68. Schulz K J, DeYoungJr J H, Seal II R R, Bradley D C. 2017. Critical Mineral Resources of the United States-Economic and Environmental Geology and Prospects for Future Supply. U.S. Geological Survey Professional Paper 1802. U.S. Geological Survey, Reston.Google Scholar
  69. Scott C, Lyons T W, Bekker A, Shen Y, Poulton S W, Chu X, Anbar A D. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean, Nature, 452(7186): 456–459.CrossRefGoogle Scholar
  70. Shannon R D, Prewitt C T. 1970. Revised values of effective ionic radii, Acta Crystallographica, 26(7): 1 046–1 048.CrossRefGoogle Scholar
  71. Shirey S B, Cartigny P, Frost D J, Keshav S, Nestola F, Nimis P, Pearson D G, Sobolev N V, Walter M J. 2013. Diamonds and the geology of mantle carbon, Reviews in Mineralogy & Geochemistry, 75(1): 355–421.CrossRefGoogle Scholar
  72. Sillitoe R H. 1997. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region, Australian Journal of Earth Sciences, 44(3): 373–388.CrossRefGoogle Scholar
  73. Sillitoe R H. 2010. Porphyry copper systems, Economic Geology, 105(1): 3–41.CrossRefGoogle Scholar
  74. Singer D A, Berger V I, Moring B C. 2008. Porphyry Copper Deposits of the World: Database and grAde and Tonnage Models, 2008 (version 1.0). U.S. Geological Survey Open-File Report 2008-1155. 45p, http://pubs.usgs.gov/of/2008/1155/. Accessed on 2013-04-27.
  75. Song X Y, Zhong H, Tao Y, Zhou M F. 2005. Magmatic sulfide deposits in the Permian Emeishan Large Igneous Province, SW China. In: Mao J W, Bierlein F P, eds. Mineral Deposit Research: Meeting the Global Challenge. Springer, Berlin, Heidelberg. p.465–467.CrossRefGoogle Scholar
  76. Stein H J, Markey R J, Morgan J W, Du A, Sun Y. 1997. Highly precise and accurate Re-Os ages for molybdenite from the East Qinling molybdenum belt, Shaanxi Province, China, Economic Geology, 92(7-8): 827–835.CrossRefGoogle Scholar
  77. Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A D, Norry M J eds. Magmatism in the Ocean Basins. Geological Society of London, London, United Kingdom. p.313–345.Google Scholar
  78. Sun W D, Arculus R J, Bennett V C, Eggins S M, Binns R A. 2003b. Evidence for rhenium enrichment in the mantle wedge from submarine arc-like volcanic glasses (Papua New Guinea), Geology, 31(10): 845–848.CrossRefGoogle Scholar
  79. Sun W D, Arculus R J, Kamenetsky V S, Binns R A. 2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization, Nature, 431(7011): 975–978.CrossRefGoogle Scholar
  80. Sun W D, Bennett V C, Eggins S M, Arculus R J, Perfit M R. 2003c. Rhenium systematics in submarine MORB and back-arc basin glasses: laser ablation ICP-MS results, Chemical Geology, 196(1–4): 259–281.CrossRefGoogle Scholar
  81. Sun W D, Bennett V C, Eggins S M, Kamenetsky V S, Arculus R J. 2003a. Enhanced mantle-to-crust rhenium transfer in undegassed arc magmas, Nature, 422(6929): 294–297.CrossRefGoogle Scholar
  82. Sun W D, Ding X, Ling M X, Zartman R E, Yang X Y. 2015a. Subduction and ore deposits. International Geology Review, 57(9–10): iii–vi,  https://doi.org/10.1080/00206814.2015.1029543.CrossRefGoogle Scholar
  83. Sun W D, Hawkesworth C J, Yao C, Zhang C C, Huang R F, Liu X, Sun X L, Ireland T, Song M S, Ling M X, Ding X, Zhang Z F, Fan W M, Wu Z Q. 2018a. Carbonated mantle domains at the base of the Earth’s upper mantle, Chemica Geology, 478: 69–75.CrossRefGoogle Scholar
  84. Sun W D, Huang R F, Li H, Hu Y B, Zhang C C, Sun S J, Zhang L P, Ding X, Li C Y, Zartman R E, Ling M X. 2015b. Porphyry deposits and oxidized magmas, Ore Geology Reviews, 65: 97–131.CrossRefGoogle Scholar
  85. Sun W D, Li C Y, Hao X L, Ling M X, Ireland T, Ding X, Fan W M. 2016. Oceanic anoxic events, subduction style and molybdenum mineralization, Solid Earth Sciences, 1(2): 64–73.CrossRefGoogle Scholar
  86. Sun W D, Liang H Y, Ling M X, Zhan M Z, Ding X, Zhang H, Yang X Y, Li Y L, Ireland T R, Wei Q R, Fan W M. 2013. The link between reduced porphyry copper deposits and oxidized magmas, Geochimica et Cosmochimica Acta, 103: 263–275.CrossRefGoogle Scholar
  87. Sun W D, Lin Q T, Zhang L P, Liao R Q, Li C Y. 2018b. The formation of the South China Sea resulted from the closure of the Neo-Tethys: a perspective from regional geology, Acta Petrologica Sinica, 34(12): 3 467–3 478. (in Chinese with English abstract)Google Scholar
  88. Sun W D, Ling M X, Chung S L, Ding X, Yang X Y, Liang H Y, Fan W M, Goldfarb R, Yin Q Z. 2012. Geochemical constraints on adakites of different origins and copper mineralization, Journal of Geology, 120(1): 105–120.CrossRefGoogle Scholar
  89. Sun W D, Ling M X, Yang X Y, Fan W M, Ding X, Liang H Y 2010. Ridge subduction and porphyry copper-gold mineralization: an overview. Science China-Earth Sciences, 53(4): 475–484.CrossRefGoogle Scholar
  90. Sun W D, Teng F Z, Niu Y L, Tatsumi Y, Yang X Y, Ling M X. 2014. The subduction factory: geochemical perspectives, Geochimica et Cosmochimica Acta, 143: 1–7.CrossRefGoogle Scholar
  91. Sun W D, Wang J T, Zhang L P, Zhang C C, Li H, Ling M X, Ding X, Li C Y, Liang H Y. 2017. The formation of porphyry copper deposits, Acta Geochimica, 36(1): 9–15.CrossRefGoogle Scholar
  92. Sun W D, Zhang H, Ling M X, Ding X, Chung S L, Zhou J B, Yang X Y, Fan W M. 2011a. The genetic association of adakites and Cu-Au ore deposits, International Geology Review, 53(5–6): 691–703.CrossRefGoogle Scholar
  93. Sun W D. 2003. The Subduction Factory, A Perspective from Rhenium and Trace Element Geochemistry of Oceanic Basalts and Eclogites. The Austrilian National University, Canberra. p.1–265.Google Scholar
  94. Sun X L, Sun W D, Hu Y B, Ding W, Ireland T, Zhan M Z, Liu J Q, Ling M X, Ding X, Zhang Z F, Fan W M. 2018c. Major Miocene geological events in southern Tibet and eastern Asia induced by the subduction of the Ninetyeast Ridge, Acta Geochimica, 37(3): 395–401.CrossRefGoogle Scholar
  95. Sun X M, Xu L, Sun W D, Zhai W, Liang Y H, Tang Q, Liang J L, Zhang Z M, Shen K, Wang F Y, Ling M X, Zartman R E. 2011b. Channelized fluids in subducted continental crust: constraints from δD-δ18O of quartz and fluid inclusions in quartz veins from the Chinese Continental Scientific Drilling Project, International Geology Review, 53(13): 1 443–1 463.CrossRefGoogle Scholar
  96. Thieblemont D, Stein G, Lescuyer J L. 1997. Epithermal and porphyry deposits: the adakite connection, Comptes Rendus de l Academie des Sciences Serie II Fascicule A-Sciences de la Terre et des Planetes, 325(2): 103–109.Google Scholar
  97. Thompson J F H, Sillitoe R H, Baker T, Lang J R, Mortensen J K. 1999. Intrusion related gold deposits associated with tungsten-tin provinces, Mineralium Deposita, 34(4): 323–334.CrossRefGoogle Scholar
  98. van Keken P E, Hacker B R, Syracuse E M, Abers G A. 2011. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide, Journal of Geophysica Research: Solid Earth, 116(B1): B01401,  https://doi.org/10.1029/2010JB007922.CrossRefGoogle Scholar
  99. van Keken P E, Syracuse E M, Hacker B H, Abers G A, Fischer K M, Kneller E A, Spiegelman M. 2009. Modeling the subduction factory: the ins and outs from a thermal and dynamical perspective, Geochimica et Cosmochimica Acta, 73: A1372.Google Scholar
  100. Wang C Y, Wei B, Zhou M F, Minh D H, Qi L. 2018. A synthesis of magmatic Ni-Cu-(PGE) sulfide deposits in the ∼260 Ma Emeishan large igneous province, SW China and northern Vietnam, Journal of Asian Earth Sciences, 154: 162–186.CrossRefGoogle Scholar
  101. Wang F Y, Ling M X, Ding X, Hu Y H, Zhou J B, Yang X Y, Liang H Y, Fan W M, Sun W D. 2011. Mesozoic large magmatic events and mineralization in SE China: oblique subduction of the Pacific plate, International Geology Review, 53(5–6): 704–726.CrossRefGoogle Scholar
  102. Wang S L, Li H, Shang L B, Bi X W, Wang X S, Fan W L. 2016. Copper partitioning between granitic silicate melt and coexisting aqueous fluid at 850°C and 100 MPa, Acta Geochimica, 35(4): 381–390.CrossRefGoogle Scholar
  103. Wang X D, Ni P, Jiang S Y, Zhao K D, Wang T G. 2010. Origin of ore-forming fluid in the Piaotang tungsten deposit in Jiangxi Province: evidence from helium and argon isotopes, Chinese Science Bulletin, 55(7): 628–634.CrossRefGoogle Scholar
  104. Wilkinson J J. 2013. Triggers for the formation of porphyry ore deposits in magmatic arcs, Nature Geoscience, 6(11): 917–925.CrossRefGoogle Scholar
  105. Xia B, Chen G W, Wang H. 2003. Analysis of tectonic settings of global superlarge porphyry copper deposits, Science in China Series D: Earth Sciences, 46(S1): 110–122.Google Scholar
  106. Xiong X L, Rao B, Chen F R, Zhu J C, Zhao Z H. 2002a. Crystallization and melting experiments of a fluorine-rich leucogranite from the Xianghualing Pluton, South China, at 150 MPa and H2O-saturated conditions, Journal of Asian Earth Sciences, 21(2): 175–188.CrossRefGoogle Scholar
  107. Xiong X L, Rao B, Zhu J C, Zhao Z H, Wang X J. 2002b. Fractional crystallization of a protolithionite granitic magma and the formation mechanism of albite granitic melt, Acta Petrologica Sinica, 18(2): 223–230. (in Chinese with English abstract)Google Scholar
  108. Xu Y G, Wang Y, Wei X, He B. 2013. Mantle plume-related mineralization and their principal controlling factors, Acta Petrologica Sinica, 29(10): 3 307–3 322. (in Chinese with English abstract)Google Scholar
  109. Xu Z Q, Wang R C, Zhao Z B, Fu X F. 2018. On the structural backgrounds of the large-scale “hard-rock type” lithium ore belts in China, Acta Geologica Sinica, 92(6): 1 091–1 106. (in Chinese with English abstract)Google Scholar
  110. Yang K H, Scott S D. 1996. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system, Nature, 383(6599): 420–423.CrossRefGoogle Scholar
  111. Yang S, Zhong H, Zhu W G, Hu W J, Bai Z J. 2017. Platinum-group element geochemistry of mafic rocks from the Dongchuan area, southwestern China, Acta Geochimica, 36(1): 52–65.CrossRefGoogle Scholar
  112. Yao J M, Mathur R, Sun W D, Song W L, Chen H Y, Mutti L, Xiang X K, Luo X H. 2016. Fractionation of Cu and Mo isotopes caused by vapor-liquid partitioning, evidence from the Dahutang W-Cu-Mo ore field, Geochemistry, Geophysics, Geosystems, 17(5): 1 725–1 739.CrossRefGoogle Scholar
  113. Zaw K, Peters S G, Cromie P, Burrett C, Hou Z Q. 2007. Nature, diversity of deposit types and metallogenic relations of South China, Ore Geology Reviews, 31(1–4): 3–47.CrossRefGoogle Scholar
  114. Zhang C C, Sun W D, Wang J T, Zhang L P, Sun S J, Wu K. 2017c. Oxygen fugacity and porphyry mineralization: a zircon perspective of Dexing porphyry Cu deposit, China, Geochimica et Cosmochimica Acta, 206: 343–363.CrossRefGoogle Scholar
  115. Zhang L P, Hu Y B, Liang J L, Ireland T, Chen Y L, Zhang R Q, Sun S J, Sun W D. 2017a. Adakitic rocks associated with the Shilu copper-molybdenum deposit in the Yangchun Basin, South China, and their tectonic implications, Acta Geochimica, 36(2): 132–150.CrossRefGoogle Scholar
  116. Zhang L P, Zhang R Q, Hu Y B, Liang J L, Ouyang Z X, He J J, Chen Y X, Guo J, Sun W D. 2017b. The formation of the Late Cretaceous Xishan Sn-W deposit, South China: geochronological and geochemical perspectives, Lithos, 290–291: 253–268.CrossRefGoogle Scholar
  117. Zhang L P, Zhang R Q, Wu K, Chen Y X, Li C Y, Hu Y B, He J J, Liang J L, Sun W D. 2018. Late Cretaceous granitic magmatism and mineralization in the Yingwuling W-Sn deposit, South China: constraints from zircon and cassiterite U-Pb geochronology and whole-rock geochemistry, Ore Geology Reviews, 96: 115–129.CrossRefGoogle Scholar
  118. Zhang R Q, Lu J J, Lehmann B, Li C Y, Li G L, Zhang L P, Guo J, Sun W D. 2017d. Combined zircon and cassiterite U-Pb dating of the Piaotang granite-related tungsten-tin deposit, southern Jiangxi tungsten district, China, Ore Geology Reviews, 82: 268–284.CrossRefGoogle Scholar
  119. Zhang Z M, Shen K, Sun W D, Liu Y S, Liou J G, Shi C, Wang J L. 2008. Fluids in deeply subducted continental crust: petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China, Geochimica et Cosmochimica Acta, 72(13): 3 200–3 228.CrossRefGoogle Scholar
  120. Zhao H J, Lu M J, Zhou S G, Ye J H, Chen X F, Zhang C, Guo W M, Huang F X, Yao C Y. 2017. A study of kwy metallogenetic zones and principal metallogeic regularities of iron ore resources in South America countries, Geology of China, 44(4): 690–706. (in Chinese with English abstract)Google Scholar
  121. Zheng Y C, Liu S A, Wu C D, Griffin W L, Li Z Q, Xu B, Yang Z M, Hou Z Q, Reilly S Y O. 2018. Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in a collisional setting, Geology, 47(2): 135–138.CrossRefGoogle Scholar
  122. Zheng Y F, Mao J W, Chen Y J, Sun W D, Ni P, Yang X Y 2019. Hydrothermal ore deposits in collisional orogens. Science Bulletin, 64(3): 205–212.CrossRefGoogle Scholar
  123. Zhou M F, Chen W T, Wang C Y, Prevec S A, Liu P P, Howarth G H. 2013. Two stages of immiscible liquid separation in the formation of Panzhihua-type Fe-Ti-V oxide deposits, SW China, Geoscience Frontiers, 4(5): 481–502.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • He Liu
    • 1
    • 2
    • 3
  • Renqiang Liao
    • 1
    • 2
    • 3
    • 4
  • Lipeng Zhang
    • 1
    • 2
    • 3
  • Congying Li
    • 1
    • 2
    • 3
  • Weidong Sun
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Key Laboratory of Marine Geology and Environment, Center of Deep-Sea Research, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Laboratory for Marine Mineral Resources, Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.Center for Ocean Mega-ScienceChinese Academy of SciencesQingdaoChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations