Advertisement

Isolation, characterization and expression analysis of TRPV4 in half-smooth tongue sole Cynoglossus semilaevis

  • Xiaomei Shang
  • Aijun MaEmail author
  • Xin’an Wang
  • Dandan Xia
  • Jiao Zhuang
Article

Abstract

The transient receptor potential vanilloid 4 (TRPV4), another Ca2+ entry channel, belongs to the vanilloid subfamily and responds to a number of different physical and chemical stimuli and exists widely in mammals. However, our understanding of the TRPV4 in fish remains poor. Therefore, we studied the TRPV4 gene from Cynoglossus semilaevis, named CsTRPV4 that encodes a putative protein of 870 amino acids common in structure and characteristic of mammalian TRPV4, including the domains of ANK repeats, six TM, TRP domain, and CaMBD. The CsTRPV4 was expressed ubiquitously in examined tissues: higher expression in the heart, spleen, testis, and eye, but lower expression in kidney and liver. Surprisingly, the expression of CsTRPV4 in lateral line was significantly higher than in many other tissues as the CsTRPV4 was expressed significantly in the free neuromasts. In addition, CsTRPV4 in the free neuromast from the larval fish was significantly expressed in the hair cells of the free neuromasts. Therefore, the free neuromasts can act as a mechano-sensor to the mechanical stimulation in molecular level in C. semilaevis, which lays a foundation for further study of the functions of the free neuromasts.

Keyword

transient receptor potential vanilloid 4 (TRPV4) Cynoglossus semilaevis gene expression free neuromasts in situ hybridization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amato V, Viña E, Calavia M G, Guerrera M C, Laurà R, Navarro M, De Carlos F, Cobo J, Germanà A, Vega J A. 2011. Trpv4 in the sensory organs of adult zebrafish, Microscopy Research & Technique, 75(1): 89–96.CrossRefGoogle Scholar
  2. Bossus M, Charmantier G, Lorin-Nebel C. 2011. Transient receptor potential vanilloid 4 in the European sea bass Dicentrarchuslabrax: a candidate protein for osmosensing, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 160(1): 43–51.CrossRefGoogle Scholar
  3. Carton A G, Montgomery J C. 2002. Responses of lateral line receptors to water flow in the Antarcticnotothenioid, Trematomusbernacchii, Polar Biology, 25(10): 789–793.Google Scholar
  4. Caterina M J, Leffler A, Malmberg A B, Martin W J, Trafton J, Petersen-Zeitz K R, Koltzenburg M, Basbaum A I, Julius D. 2000. Impaired nociception and pain sensation in mice lacking the capsaicin receptor, Science, 288(5464): 306–313.CrossRefGoogle Scholar
  5. Caterina M J, Rosen T A, Tominaga M, Brake A J, Julius D. 1999. A capsaicin-receptor homologue with a high threshold for noxious heat, Nature, 1999, 398(6726): 436–441.CrossRefGoogle Scholar
  6. Clapham D E. 2003. TRP channels as cellular sensors, Nature, 426(6966): 517–524.CrossRefGoogle Scholar
  7. Colbert H A, Smith T L, Bargmann C I. 1997. OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. The Journal of Neuroscience, 17(21): 8 259–8 269.CrossRefGoogle Scholar
  8. Cuajungco M P, Grimm C, Oshima K, D’hoedt D, Nilius B, Mensenkamp AR, Bindels RJM, Plomann M, Heller S. 2006. PACSINs bind to the TRPV4 cation channel PACSIN 3 modulates the subcellular localization of TRPV4, Journal of Biological Chemistry, 281(27): 18 753–18 762.CrossRefGoogle Scholar
  9. D’Hoedt D, Owsianik G, Prenen J, Cuajungco MP, Grimm C, Heller S, Voets T, Nilius B. 2008. Stimulus-specific modulation of the cation channel TRPV4 by PACSIN 3, Journal of Biological Chemistry, 283(10): 6 272–6 280.CrossRefGoogle Scholar
  10. Dambly-Chaudière C, Sapède D, Soubiran F, Decorde K, Gompel N, Ghysen A. 2003. The lateral line of zebrafish: a model system for the analysis of morphogenesis and neural development in vertebrates, Biology of the Cell, 95(9): 579–587.CrossRefGoogle Scholar
  11. Dijkgraaf S. 1963. The functioning and significance of the lateral-line organs, Biological Reviews, 38(1): 51–105.CrossRefGoogle Scholar
  12. Eid S R, Cortright D N. 2009. Transient receptor potential channels on sensory nerves. In: Canning B, Spina D eds. Sensory Nerves. Springer, Berlin, Heidelberg.Google Scholar
  13. Engelmann J, Hanke W, Mogdans J, Bleckmann H. 2000. Hydrodynamic stimuli and the fish lateral line, Nature, 408(6808): 51–52.CrossRefGoogle Scholar
  14. Everaerts W, Nilius B, Owsianik G. 2010. The vanilloid transient receptor potential channel TRPV4: From structure to disease, Progress in Biophysics and Molecular Biology, 103(1): 2–17.CrossRefGoogle Scholar
  15. Galindo-Villegas J, Montalban-Arques A, Liarte S, De Oliveira S, Pardo-Pastor C, Rubio-Moscardo F, Meseguer J, Valverde M A, Mulero V. 2016. Correction: cutting edge: trpv4—mediated detection of hyposmotic stress by skin keratinocytes activates developmental immunity, Journal of Immunology, 196(8): 3 494.CrossRefGoogle Scholar
  16. Garcia-Elias A, Mrkonjić S, Jung C, Pardo-Pastor C, Vicente R, Valverde M A. 2014. The trpv4 channel. In: Nilius B, Flockerzi V eds. Mammalian Transient Receptor Potential (TRP) Cation Channels. Springer, Berlin, Heidelberg.Google Scholar
  17. Gaudet R. 2008. A primer on ankyrin repeat function in TRP channels and beyond, Molecular BioSystems, 4(5): 372–379.CrossRefGoogle Scholar
  18. Kawamura G, Masuma S, Tezuka N, Koiso M, Jinbo T, Namba K. 2003. Morphogenesis of sense organs in the bluefin tuna Thunnus orientalis: The big fish bang. In: Proceedings of the 26th Annual Larval Fish Conference. Norwegian Institute of Marine Research, Bergen, Norway. p.123–135.Google Scholar
  19. Koyama H, Kishida R, Goris R C, Kusunoki T. 1990. Organization of the primary projections of the lateral line nerves in the lamprey Lampetra japonica. The Journal of Comparative Neurology, 295(2): 277–289.Google Scholar
  20. Kwan K Y, Glazer J M, Corey D P, Rice F L, Stucky C L. 2009. TRPA1 modulates mechanotransduction in cutaneous sensory neurons, Journal of Neuroscience, 29(15): 4 808–4 819.CrossRefGoogle Scholar
  21. Liedtke W, Choe Y, Martí-Renom M A, Bell A M, Denis C S, Šali A, Hudspeth A J, Friedman J M, Heller S. 2000. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor, Cell, 103(3): 525–535.CrossRefGoogle Scholar
  22. Liedtke W, Tobin D M, Bargmann C I, Friedman J M. 2003. Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 100(Suppl. 2): 14 531–14 536.CrossRefGoogle Scholar
  23. Liedtke W. 2007. Role of TRPV ion channels in sensory transduction of osmotic stimuli in mammals, Experimental Physiology, 92(3): 507–512.CrossRefGoogle Scholar
  24. Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method, Methods, 25(4): 402–408.CrossRefGoogle Scholar
  25. Ma A J, Liu X Z, Xu Y J, Liang Y, Zhuang Z M. 2006. Feeding rhythm and growth of the tongue sole, Cynoglossus semilaevis Günther, during its early life stages, Aquaculture Research, 37(6): 586–593.CrossRefGoogle Scholar
  26. Ma A J, Wang X A, Zhuang Z M, Zhang X M, Zhang L J. 2007b. Structure of retina and visual characteristics of the half-smooth tongue-sole Cynoglossus semilaevis Günter, Acta Zoologica Sinica, 53(2): 354–363. (in Chinese with English abstract)Google Scholar
  27. Ma A J, Wang X A, Zhuang Z M. 2007a. Lateral-line sense organs and dermal surface structures of the tongue sole Cynoglossus semilaevis. Acta Zoologica Sinica, 53(6): 1 113–1 120. (in Chinese with English abstract)Google Scholar
  28. Mangos S, Liu Y, Drummond I A. 2007. Dynamic expression of the osmosensory channel trpv4 in multiple developing organs in zebrafish, Gene Expression Patterns, 7(4): 480–484.CrossRefGoogle Scholar
  29. Marshall N J. 1996. Vision and sensory physiology the lateral line systems of three deep-sea fish, Journal of Fish Biology, 49(SA): 239–258.CrossRefGoogle Scholar
  30. O’Neil R G, Heller S. 2005. The mechanosensitive nature of TRPV channels, Pflügers Archiv., 451(1): 193–203.CrossRefGoogle Scholar
  31. Pedersen S F, Owsianik G, Nilius B. 2005. TRP channels: an overview, Cell Calcium, 38(3–4): 233–252.CrossRefGoogle Scholar
  32. Rui X, Xu X Z S. 2010. Mechanosensitive channels: in touch with Piezo, Current Biology, 20(21): R936–R938.CrossRefGoogle Scholar
  33. Ryskamp D A, Witkovsky P, Barabas P, Huang W, Koehler C, Akimov N P, Lee S H, Chauhan S, Xing W, Rentería R C, Liedtke W, Krizaj D. 2014. The polymodal ion channel trpv4 modulates calcium flux, spiking rate and apoptosis of mouse retinal ganglion cells, Journal of Neuroscience, 31(19): 7 089–7 101.CrossRefGoogle Scholar
  34. Sha Z X, Luo X H, Liao X L, Wang SL, Wang Q L, Chen S L. 2011. Development and characterization of 60 novel EST-SSR markers in half-smooth tongue sole Cynoglossus semilaevis. Journal of Fish Biology, 78(1): 322–331.Google Scholar
  35. Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant T D. 2000. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity, Nature Cell Biology, 2(10): 695–702.CrossRefGoogle Scholar
  36. Suzuki M, Mizuno A. 2012. The molecular mechanism of multifunctional mechano-gated channel TRPV4. In: Amkin A, Lozinsky I eds. Mechanically Gated Channels and their Regulation. Springer, Dordrecht.Google Scholar
  37. Thisse C, Thisse B. 2008. High-resolution in situ hybridization to whole-mount zebrafish embryos, Nature Protocols, 3(1): 59–69.CrossRefGoogle Scholar
  38. Voets T, Prenen J, Vriens J, Watanabe H, Janssens A, Wissenbach U, Bödding M, Droogmans G, Nilius B. 2002. Molecular determinants of permeation through the cation channel TRPV4, Journal of Biological Chemistry, 277(37): 33 704–33 710.CrossRefGoogle Scholar
  39. Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B. 2004. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel trpv4, Proceedings of the National Academy of Sciences of the United States of America, 101(1): 396–401.CrossRefGoogle Scholar
  40. Watanabe S, Seale A P, Grau E G, Kaneko T. 2012. Stretch-activated cation channel TRPV4 mediates hyposmotically induced prolactin release from prolactin cells of Mozambique tilapia Oreochromismossambicus. American Journal of Physiology Regulatory Integrative & Comparative Physiology, 302(8): R1 004–R1 011.CrossRefGoogle Scholar
  41. Wissenbach U, Bödding M, Freichel M, Flockerzi V. 2000. Trp12, a novel Trp related protein from kidney, FEBS Letters, 485(2–3): 127–134.CrossRefGoogle Scholar
  42. Zhang Y A, Okada A, Lew C H, Mcconnell S K. 2002. Regulated nuclear trafficking of the homeodomain protein otx1 in cortical neurons, Molecular and Cellular Neuroscience, 19(3): 430–446.CrossRefGoogle Scholar
  43. Zhang Z, Zhao Z, Margolskee R F, Liman E. 2007. The transduction channel TRPM5 is gated by intracellular calcium in taste cells, Neuroscience, 27(21): 5 777–5 786.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiaomei Shang
    • 1
    • 2
    • 3
    • 4
    • 5
  • Aijun Ma
    • 1
    • 2
    • 3
    • 4
    Email author
  • Xin’an Wang
    • 1
    • 2
    • 3
    • 4
  • Dandan Xia
    • 1
    • 2
    • 3
    • 4
  • Jiao Zhuang
    • 1
    • 2
    • 3
    • 4
  1. 1.Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
  2. 2.Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic BreedingQingdaoChina
  3. 3.Qingdao Key Laboratory for Marine Fish Breeding and BiotechnologyQingdaoChina
  4. 4.Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and Technology (Qingdao)QingdaoChina
  5. 5.College of Marine and Environmental SciencesTianjin University of Science and TechnologyTianjinChina

Personalised recommendations