Journal of Oceanology and Limnology

, Volume 37, Issue 6, pp 1837–1845 | Cite as

Study on surface wave-induced mixing of transport flux residue under typhoon conditions

  • Yongzeng Yang
  • Yongfang ShiEmail author
  • Chencheng Yu
  • Yong Teng
  • Meng Sun


The transport flux residue of surface waves plays an important role in a variety of ocean phenomena, for example, the change in sea surface temperature (SST) and upper mixed layer profile that were studied in a series of recent papers. In the previous studies, its effect was discussed rigorously and fragmented based on numerical modeling. Here we propose a relatively comprehensive and simplified exposition of the wave transport flux residue, and focus on its influence under typhoon conditions with strong background current. An analogue Reynolds Number is presented for tentative comparison with wave-generated turbulence mixing, especially in the coastal area. Numerical results indicate that both overwhelming dynamical mixing processes can remarkably change the coastal environment, and should not be ignored consciously for further marine hazards assessment.


wave transport flux residue decomposition scheme Analogue Reynolds Number 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal Y C, Terray E A, Donelan M A, Hwang P A, Williams III A J, Drennan W M, Kahma K K, Krtaigorodskii S A. 1992. Enhanced dissipation of kinetic energy beneath surface waves. Nature , 359 (6392): 219–220.CrossRefGoogle Scholar
  2. Babanin A V, Chalikov D. 2012. Numerical investigation of turbulence generation in non-breaking potential waves. J. Geophys. Res., 117 (C11): C06010, Scholar
  3. Babanin A V. 2006. On a wave-induced turbulence and a wave-mixed upper ocean layer. Geophys. Res. Lett., 33 (20): L20605, Scholar
  4. Craig P D, Banner M L. 1994. Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 24 (12): 2 546–2 559.CrossRefGoogle Scholar
  5. Dai D J, Qiao F L, Sulisz W, Han L, Babanin A. 2010. An experiment on the nonbreaking surface-wave-induced vertical mixing. J. Phys. Oceanogr., 40 (9): 2 180–2 188.CrossRefGoogle Scholar
  6. Hasselmann K. 1970. Wave-driven inertial oscillations. Geophys. Fluid Dyn., 1 (3–4): 463–502.Google Scholar
  7. Lai Q Z, Ma L M, Huang W, Wu L G. 2013. The ocean response to Typhoon Morakot (2009) in the western North Pacific boundary region. Acta Oceanol. Sin., 35 (3): 65–77. (in Chinese with English abstract)Google Scholar
  8. Lewis D M, Belcher S E. 2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans , 37 (4): 313–351.CrossRefGoogle Scholar
  9. Liu Z H, Xu J P, Sun C H, Wu X F. 2014. An upper ocean response to Typhoon Bolaven analyzed with Argo profiling floats. Acta Oceanol. Sin., 33 (11): 90–101.CrossRefGoogle Scholar
  10. Liu Z H, Xu J P, Zhu B K, Sun C H, Zhang L F. 2007. The upper ocean response to tropical cyclones in the northwestern Pacific analyzed with Argo data. Chin. J. Oceanol. Limnol., 25 (2): 123–131.CrossRefGoogle Scholar
  11. Longuet-Higgins M S, Stewart R W. 1962. Radiation stress and mass transport in gravity waves, with application to ‘surf beats’. J. Fluid Mech., 13 (4): 481–504.CrossRefGoogle Scholar
  12. Longuet-Higgins M S, Stewart R W. 1964. Radiation stresses in water waves; a physical discussion, with applications. Deep Sea Res. Oceanogr. Abst., 11 (4): 529–562.CrossRefGoogle Scholar
  13. Mei Q Z. 1984. Dynamics of Water Waves. Science Press, Beijing. (in Chinese)Google Scholar
  14. Phillips O M. 1977. The Dynamics of the Upper Ocean. 2nd edn. Cambridge University Press, Cambridge.Google Scholar
  15. Polton J A, Lewis D M, Belcher S E. 2005. The role of wave-induced Coriolis-Stokes forcing on the wind-driven mixed layer. J. Phys. Oceanogr., 35 (4): 444–457.CrossRefGoogle Scholar
  16. Qiao F L, Yang Y Z, Xia C S, Yuan Y L. 2008. The role of surface waves in the ocean mixed layer. Acta Oceanol. Sin., 27 (3): 30–37.Google Scholar
  17. Qiao F L, Yuan Y L, Ezer T, Xia C S, Yang Y Z, Lü X G, Song Z Y. 2010. A three-dimensional surface wave-ocean circulation coupled model and its initial testing. Ocean Dyn., 60 (5): 1 339–1 355.CrossRefGoogle Scholar
  18. Qiao F L, Yuan Y L, Yang Y Z, Zheng Q A, Xia C S, Ma J. 2004. Wave-induced mixing in the upper ocean: Distribution and application to a global ocean circulation model. Geophys. Res. Lett., 31 (11): L11303, Scholar
  19. Shao J C, Zhao H, Shen C Y, Lü J H. 2015. Influence of Typhoon Matsa on phytoplankton chlorophyll-a in the northwest Pacific Ocean offshore and alongshore. J. Guangdong Ocean Univ., 35 (4): 67–74. (in Chinese with English abstract)Google Scholar
  20. Shi Y F, Wu K J, Yang Y Z. 2016. Preliminary results of assessing the mixing of wave transport flux residual in the upper ocean with ROMS. J. Ocean Univ. China , 15 (2): 193–200.CrossRefGoogle Scholar
  21. Sun F, Qian C, Wang W et al. 2003. Wave-induced radiation stress and its driving effect on current. Sci. China, Ser. D , 33 (8): 791–798. (in Chinese)Google Scholar
  22. Sun F, Wei Y L, Wu K J. 2006a. Wave-induced radiation stress under geostrophic condition. Acta Oceanol. Sin., 28 (6): 1–4. (in Chinese with English abstract)Google Scholar
  23. Sun Q, Guan C L, Song J B. 2006b. Effect of wave breaking on turbulent energy budgets in ocean surface mixed layer. Oceanol. Limnol. Sin., 37 (1): 69–74. (in Chinese with English abstract)Google Scholar
  24. Terray E A, Donelan M A, Agrawal Y C, Drennan W M, Kahma K K, Williams A J, Hwang P A, Kitaigorodskii S A. 1996. Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26 (5): 792–807.CrossRefGoogle Scholar
  25. Terray E A, Donelan M A, Agrawal Y C, Drennan W M, Kahma K K, Williams III A J, Hwang P A, Kitaigorodskii S A. 1997. Reply. J. Phys. Oceanogr., 27 (10): 2 308–2 309.CrossRefGoogle Scholar
  26. Terray E A, Drennan W M, Donelan M A. 2000. The vertical structure of shear and dissipation in the ocean surface layer. In: Proceedings Symposium on the Wind-driven Air-Sea Interaction. ADFA Document Production Centre, Canberra, Australia. p. 239–245.Google Scholar
  27. Wang G S, Qiao F L. 2008. Ocean temperature responses to Typhoon Mstsa in the East China Sea. Acta Oceanol. Sin., 27 (4): 26–38.Google Scholar
  28. Wen S C, Yu Z W. 1984. Wave Theories and Calculation Principles. Science Press, Beijing. (in Chinese)Google Scholar
  29. Wu Y G, Tao M D. 2011. Fundamental Dynamics of Water Waves. Fudan University Press, Shanghai. (in Chinese)Google Scholar
  30. Xia C S, Qiao F L, Yang Y Z, Ma J, Yuan Y L. 2006. Three-dimensional structure of the summertime circulation in the Yellow Sea from a wave-tide-circulation coupled model. J. Geophys. Res., 111 (C11): C11S03, Scholar
  31. Xia C S, Qiao F L, Zhang M N, Yang Y Z, Yuan Y L. 2004. Simulation of double cold cores of the 35°N section in the Yellow Sea with a wave-tide-circulation coupled model. Chin. J. Oceanol. Limnol., 22 (3): 292–298.CrossRefGoogle Scholar
  32. Xu Z G, Bowen A J. 1994. Wave-and wind-driven flow in water of finite depth. J. Phys. Oceanogr., 24 (9): 1 850–1 866.CrossRefGoogle Scholar
  33. Yang Y Z, Qiao F L, Xia C S, Ma J, Yuan Y L. 2003. Effect of ocean wave momenfum and mixing on upper ocean. Adv. Mar. Sci., 21 (4): 363–368. (in Chinese with English abstract)Google Scholar
  34. Yang Y Z, Qiao F L, Xia C S, Ma J, Yuan Y L. 2004. Wave-induced Mixing in the Yellow Sea. Chin. J. Oceanol. Limnol., 22 (3): 322–326.CrossRefGoogle Scholar
  35. Yang Y Z, Zhan R, Teng Y. 2009. Parameterization of ocean wave-induced mixing processes for finite water depth. Acta Oceanol. Sin., 28 (4): 16–22.Google Scholar
  36. Yin X Q, Qiao F L, Yang Y Z, Xia C S, Chen X Y. 2012. Argo data assimilation in ocean general circulation model of Northwest Pacific Ocean. Ocean Dyn., 62 (7): 1 059–1 071.CrossRefGoogle Scholar
  37. Yuan Y L, Pan Z D, Sun L T. 1991. LAGFD-WAM numerical wave model I. Basic physical model. Acta Oceanol. Sin., 10 (4): 483–488.Google Scholar
  38. Yuan Y L, Qiao F L, Yin X Q, Han L, Lu M. 2012. Establishment of the ocean dynamic system with four sub-systems and the derivation of their governing equation sets. J. Hydrodyn., Ser. B , 24 (2): 153–168.CrossRefGoogle Scholar
  39. Yuan Y L, Qiao F L, Yin X Q, Han L. 2013. Analytical estimation of mixing coefficient induced by surface wave-generated turbulence based on the equilibrium solution of the second-order turbulence closure model. Sci. China Earth Sci., 56 (1): 71–80.CrossRefGoogle Scholar
  40. Yuan Y, Qiao F, Hua F et al. 1999. The development of a coastal circulation numerical model: 1. Wave-induced mixing and wave-current interaction. J. Hydrodyn. Ser. A , 14 (4B): 1–8. (in Chinese)Google Scholar
  41. Zhang T C, Yang Y Z, Yin X Q, Shi Y F, Wang Y H. 2015. Influence of wave transport flux residual on upper temperature. Adv. Mar. Sci., 33 (3): 288–294. (in Chinese with English abstract)Google Scholar
  42. Zhou W H, Yin K D, Harrison P J, Lee J H W. 2012. The influence of late summer typhoons and high river discharge on water quality in Hong Kong waters. Estuar., Coast Shelf Sci., 111: 35–47.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yongzeng Yang
    • 1
    • 2
    • 3
  • Yongfang Shi
    • 1
    Email author
  • Chencheng Yu
    • 4
  • Yong Teng
    • 1
  • Meng Sun
    • 1
  1. 1.First Institute of OceanographyMinistry of Natural ResourcesQingdaoChina
  2. 2.Laboratory for Regional Oceanography and Numerical ModelingQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.Key Laboratory of Marine Science and Numerical ModelingMinistry of Natural ResourcesQingdaoChina
  4. 4.Zhejiang UniversityZhoushanChina

Personalised recommendations