Advertisement

Rogue waves during Typhoon Trami in the East China Sea

  • Xingjie JiangEmail author
  • Changlong Guan
  • Daolong Wang
Article

Abstract

As concluded from physical theory and laboratory experiment, it is widely accepted that nonlinearities of sea state play an important role in the formation of rogue waves; however, the sea states and corresponding nonlinearities of real-world rogue wave events remain poorly understood. Three rogue waves were recorded by a directional buoy located in the East China Sea during Typhoon Trami in August 2013. This study used the WAVEWATCH III model to simulate the sea state conditions pertaining to when and where those rogue waves were observed, based on which a comprehensive and full-scale analysis was performed. From the perspectives of wind and wave fields, wave system tracking, High-Order Spectral method simulation, and some characteristic sea state parameters, we concluded that the rogue waves occurred in sea states dominated by second-order nonlinearities. Moreover, third-order modulational instabilities were suppressed in these events because of the developed or fully developed sea state determined by the typhoon wave system. The method adopted in this study can provide comprehensive and full-scale analysis of rogue waves in the real world. The case studied in this paper is not considered unique, and rules could be found and confirmed in relation to other typhoon sea states through the application of our proposed method.

Keyword

rogue wave wave system tracking High-Order Spectral method nonlinear effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ardhuin F, Rogers W, Babanin A V, Filipot J F, Magne R, Roland A, van der Westhuysen A, Queffeulou P, Lefevre J M, Aouf L, Collard F. 2010. Semiempirical dissipation source functions for ocean waves. Part I: definition, calibration, and validation. J. Phys. Oceanogr., 40(9): 1917–1941.CrossRefGoogle Scholar
  2. Barbariol F, Benetazzo A, Carniel S, Sclavo M. 2015. Space-time wave extremes: the role of metocean forcings. J. Phys. Oceanogr., 45(7): 1897–1916,  https://doi.org/10.1175/JPO-D-14-0232.1.CrossRefGoogle Scholar
  3. Baxevani A, Rychlik I. 2006. Maxima for Gaussian seas. Ocean Eng., 33(7): 895–911,  https://doi.org/10.1016/j.oceaneng.2005.06.006.CrossRefGoogle Scholar
  4. Devaliere E M, Hanson J L, Luettich R. 2009. Spatial tracking of numerical wave model output using a spiral search algorithm. In: Proceedings of 2009 WRI World Congress on Computer Science and Information Engineering. IEEE, Angeles, CA, USA. p. 404–408,  https://doi.org/10.1109/CSIE.2009.1021.CrossRefGoogle Scholar
  5. Dommermuth D. 2000. The initialization of nonlinear waves using an adjustment scheme. Wave Motion, 32(4): 307–317,  https://doi.org/10.1016/S0165-2125(00)00047-0.CrossRefGoogle Scholar
  6. Dommermuth D G, Yue D K P. 1987. A high-order spectral method for the study of nonlinear gravity waves. J. Fluid Mech., 184: 267–288,  https://doi.org/10.1017/S002211208700288X.CrossRefGoogle Scholar
  7. Ducrozet G, Bonnefoy F, Le Touzé D, Ferrant P. 2007. 3-D HOS simulations of extreme waves in open seas. Nat. Hazards Earth Syst. Sci., 7(1): 109–122,  https://doi.org/10.5194/nhess-7-109-2007.CrossRefGoogle Scholar
  8. Ducrozet G, Bonnefoy F, Le Touzé D, Ferrant P. 2016. HOS-ocean: open-source solver for nonlinear waves in open ocean based on high-order spectral method. Comput. Phys. Commun., 203: 245–254,  https://doi.org/10.1016/j.cpc.2016.02.017.CrossRefGoogle Scholar
  9. Ducrozet G, Bonnefoy F, Perignon Y. 2017. Applicability and limitations of highly non-linear potential flow solvers in the context of water waves. Ocean Eng., 142: 233–244,  https://doi.org/10.1016/j.oceaneng.2017.07.003.CrossRefGoogle Scholar
  10. Dysthe K, Krogstad H E, Müller P. 2008. Oceanic rogue waves. Annu. Rev. Fluid Mech., 40: 287–310,  https://doi.org/10.1146/annurev.fluid.40.111406.102203.CrossRefGoogle Scholar
  11. Dysthe K, Trulsen K, Krogstad H E, Socquet-Juglard H. 2003. Evolution of a narrow-band spectrum of random surface gravity waves. J. Fluid Mech., 478: 1–10.CrossRefGoogle Scholar
  12. ECMWF. 2016. Part VII: ECMWF Wave Model. IFS Documentation CY43R1, https://www.ecmwf.int/node/17120.
  13. Fedele F. 2008. Rogue waves in oceanic turbulence. Phys. D: Nonlinear Phenom., 237(14–17): 2127–2131,  https://doi.org/10.1016/j.physd.2008.01.022.CrossRefGoogle Scholar
  14. Fedele F. 2012. Space-time extremes in short-crested storm seas. J. Phys. Oceanogr., 42(9): 1 601–1 615,  https://doi.org/10.1175/JPO-D-11-0179.1.CrossRefGoogle Scholar
  15. Fedele F. 2015. On the kurtosis of deep-water gravity waves. J. Fluid Mech., 782: 25–36,  https://doi.org/10.1017/jfm.2015.538.CrossRefGoogle Scholar
  16. Fedele F, Brennan J, Ponce de León S, Dudley J, Dias F. 2016. Real world ocean rogue waves explained without the modulational instability. Sci. Rep., 6: 27 715,  https://doi.org/10.1038/srep27715.CrossRefGoogle Scholar
  17. Fedele F, Lugni C, Chawla A. 2017. The sinking of the El Faro: predicting real world rogue waves during hurricane Joaquin. Sci. Rep., 7(1): 11 188,  https://doi.org/10.1038/s41598-017-11505-5.CrossRefGoogle Scholar
  18. Fedele F, Tayfun M. 2009. On nonlinear wave groups and crest statistics. J. Fluid Mech., 620: 221–239,  https://doi.org/10.1017/S0022112008004424.CrossRefGoogle Scholar
  19. Fernandez L, Onorato M, Monbaliu J, Toffoli A. 2014. Modulational instability and wave amplification in finite water depth. Nat. Hazards Earth Syst. Sci., 14(3): 705–711,  https://doi.org/10.5194/nhess-14-705-2014.CrossRefGoogle Scholar
  20. Goda Y. 1970. Numerical experiments on wave statistics with spectral simulation. Rep. Port Harb. Res. Inst., 9(3): 3–57.Google Scholar
  21. Hanson J L, Jensen R E. 2004. Wave system diagnostics for numerical wave models. In: Proceedings of the 8th International Workshop on Wave Hindcasting and Forecasting Turtle Bay Resort. Coastal and Hydraulics Laboratory, Oahu, Hawaii.Google Scholar
  22. Hanson J L, Phillips O M. 2001. Automated analysis of ocean surface directional wave spectra. J. Atmos. Oceanic Technol., 18(2): 277–293,  https://doi.org/10.1175/1520-0426(2001)018<0277:AAOOSD>2.0.CO.CrossRefGoogle Scholar
  23. Hanson J L, Tracy B A, Tolman H L, Scott R D. 2009. Pacific hindcast performance of three numerical wave models. J. Atmos. Oceanic Technol., 26(8): 1614–1633,  https://doi.org/10.1175/2009JTECHO650.1.CrossRefGoogle Scholar
  24. Hasselmann K. 1962. On the non-linear energy transfer in a gravity-wave spectrum part 1. General theory. J. Fluid Mech., 12(4): 481–500,  https://doi.org/10.1017/S0022112062000373.CrossRefGoogle Scholar
  25. Hasselmann K. 1963a. On the non-linear energy transfer in a gravity wave spectrum part 2. Conservation theorems; wave-particle analogy; irrevesibility. J. Fluid Mech., 15(2): 273–281,  https://doi.org/10.1017/S0022112063000239.CrossRefGoogle Scholar
  26. Hasselmann K. 1963b. On the non-linear energy transfer in a gravity-wave spectrum. Part 3. Evaluation of the energy flux and swell-sea interaction for a Neumann spectrum. J. Fluid Mech., 15(3): 385–398,  https://doi.org/10.1017/S002211206300032X.CrossRefGoogle Scholar
  27. Hasselmann S, Hasselmann K, Allender J H, Barnett T P. 1985. Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. Part II: parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr., 15(11): 1 378–1 391.CrossRefGoogle Scholar
  28. In K, Waseda T, Kiyomatsu K, Tamura H, Miyazawa Y, Iyama K. 2009. Analysis of a marine accident and freak wave prediction with an operational wave model. In: Proceedings of the 19th International Offshore and Polar Engineering Conference. SPE, Osaka, Japan. p. 877–883.Google Scholar
  29. Janssen P A E M. 2003. Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr., 33(4): 863–884,  https://doi.org/10.1175/1520-0485(2003)33<863:NFIAFW>2.0.CO;2.CrossRefGoogle Scholar
  30. Janssen P A E M. 2009. On some consequences of the canonical transformation in the Hamiltonian theory of water waves. J. Fluid Mech., 637: 1–44,  https://doi.org/10.1017/S0022112009008131.CrossRefGoogle Scholar
  31. Janssen P A E M. 2014. On a random time series analysis valid for arbitrary spectral shape. J. Fluid Mech., 759: 236–256,  https://doi.org/10.1017/jfm.2014.565.CrossRefGoogle Scholar
  32. Janssen P A E M. 2018. Shallow-water version of the Freak Wave Warning System. ECMWF Tech. Memo., 813. https://www.ecmwf.int/en/elibrary/18063-shallow-water-version-freak-wave-warning-system.
  33. Janssen P A E M, Bidlot J R. 2009. On the extension of the freak wave warning system and its verification. ECMWF Tech. Memo., 588. https://www.ecmwf.int/en/elibrary/10243-extension-freak-wave-warning-system-and-its-verification.
  34. Janssen P A E M, Onorato M. 2007. The intermediate water depth limit of the zakharov equation and consequences for wave prediction. J. Phys. Oceanogr., 37: 2389–2400,  https://doi.org/10.1175/JPO3128.1.CrossRefGoogle Scholar
  35. Kharif C, Pelinovsky E. 2003. Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B/Fluids, 22(6): 603–634,  https://doi.org/10.1016/j.euromechflu.2003.09.002.CrossRefGoogle Scholar
  36. Kharif C, Pelinovsky E, Slunyaev A. 2009. Rogue Waves in the Ocean. Springer, Berlin, Heidelberg, 2p.  https://doi.org/10.1007/978-3-540-88419-4.Google Scholar
  37. Kuik A J, van Vledder G P, Holthuijsen L H. 1988. A method for the routine analysis of pitch-and-roll buoy wave data. J. Phys. Oceanogr., 18(7): 1 020–1 034,  https://doi.org/10.1175/1520-0485(1988)018<1020:AMFTRA>2.0.CO;2.CrossRefGoogle Scholar
  38. Longuet-Higgins M S. 1957. The statistical analysis of a random, moving surface. Phil. Trans. Roy. Soc. A., 1957, 249(966): 321–387.CrossRefGoogle Scholar
  39. Mori N, Janssen P A E M. 2006. On kurtosis and occurrence probability of freak waves. J. Phys. Oceanogr., 36(7): 1 471–1 483,  https://doi.org/10.1175/JPO2922.1.CrossRefGoogle Scholar
  40. Mori N, Onorato M, Janssen P A E M. 2011. On the estimation of the kurtosis in directional sea states for freak wave forecasting. J. Phys. Oceanogr., 41(8): 1 484–1 497,  https://doi.org/10.1175/2011JPO4542.1.CrossRefGoogle Scholar
  41. Pierson W J Jr, Moskowitz L. 1964. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69(24): 5181–5190.CrossRefGoogle Scholar
  42. Saha S et al. 2011. NCEP Climate Forecast System Version 2 (CFSv2) selected hourly time-series products. Research data archive at the national center for atmospheric research, computational and information systems laboratory,  https://doi.org/10.5065/D6N877VB. Accessed 28 May 2018.
  43. Sergeeva A, Slunyaev A. 2013. Rogue waves, rogue events and extreme wave kinematics in spatio-temporal fields of simulated sea states. Nat. Hazards Earth Syst. Sci., 13(7): 1759–1771,  https://doi.org/10.5194/nhess-13-1759-2013.CrossRefGoogle Scholar
  44. Tamura H, Waseda T, Miyazawa Y. 2009. Freakish sea state and swell-windsea coupling: numerical study of the Suwa-Maru incident. Geophys. Res. Lett., 36(1): L01607,  https://doi.org/10.1029/2008GL036280.CrossRefGoogle Scholar
  45. Tayfun M A. 1980. Narrow-band nonlinear sea waves. J. Geophys. Res. Oceans, 85(C3): 1548–1552,  https://doi.org/10.1029/JC085iC03p01548.CrossRefGoogle Scholar
  46. Tayfun M A. 2006. Statistics of nonlinear wave crests and groups. Ocean Eng., 33(11–12): 1589–1622,  https://doi.org/10.1016/j.oceaneng.2005.10.007.CrossRefGoogle Scholar
  47. Tayfun M A, Fedele F. 2007. Wave-height distributions and nonlinear effects. Ocean Eng., 34(11-12): 1631–1649,  https://doi.org/10.1016/j.oceaneng.2006.11.006.CrossRefGoogle Scholar
  48. Tayfun M A, Lo J M. 1990. Nonlinear effects on wave envelope and phase. J. Waterw. Port, Coastal, Ocean Eng., 116(1): 79–100,  https://doi.org/10.1061/(ASCE)0733-950X(1990)116:1(79).CrossRefGoogle Scholar
  49. The WAVEWATCH III Development Group (WW3DG). 2016. User manual and system documentation of WAVEWATCH III R Version 5.16. Tech. Note 329, NOAA/NWS/NCEP/MMAB, College Park, MD, USA, http://polar.ncep.noaa.gov/waves/WAVEWATCH/. Accessed 09 Mar 2018.Google Scholar
  50. Toffoli A, Gramstad O, Trulsen K, Monbaliu J, Bitner-Gregersen E, Onorato M. 2010. Evolution of weakly nonlinear random directional waves: laboratory experiments and numerical simulations. J. Fluid Mech., 664: 313–336,  https://doi.org/10.1017/S002211201000385X.CrossRefGoogle Scholar
  51. Tolman H L. 1991. A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. J. Phys. Oceanogr., 21(6): 782–797,  https://doi.org/10.1175/1520-0485(1991)021<0782:ATGMFW>2.0.CO;2.CrossRefGoogle Scholar
  52. Vincent L, Soille P. 1991. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell., 13(6): 583–598.CrossRefGoogle Scholar
  53. Voorrips A C, Makin V K, Hasselmann S. 1997. Assimilation of wave spectra from pitch-and-roll buoys in a North Sea wave model. J. Geophys. Res. Oceans, 102(C3): 5829–5849,  https://doi.org/10.1029/96JC03242.CrossRefGoogle Scholar
  54. Waseda T, Tamura H, Kinoshita T. 2012. Freakish sea index and sea states during ship accidents. J. Mar. Sci. Technol., 17(3): 305–314,  https://doi.org/10.1007/s00773-012-0171-4.CrossRefGoogle Scholar
  55. Waseda T, In K, Kiyomatsu K, Tamura H, Miyazawa Y, Iyama K. 2014. Predicting freakish sea state with an operational third-generation wave model. Nat. Hazards Earth Syst. Sci., 14(4): 945–957,  https://doi.org/10.5194/nhess-14-945-2014.CrossRefGoogle Scholar
  56. West B J, Brueckner K A, Janda R S, Milder D M, Milton R L. 1987. A new numerical method for surface hydrodynamics. J. Geophys. Res.: Oceans, 92(C11): 11803–11824,  https://doi.org/10.1029/JC092iC11p11803.CrossRefGoogle Scholar
  57. Xiao W T, Liu Y M, Wu G Y, Yue D K P. 2013. Rogue wave occurrence and dynamics by direct simulations of nonlinear wave-field evolution. J. Fluid Mech., 720: 357–392,  https://doi.org/10.1017/jfm.2013.37.CrossRefGoogle Scholar
  58. Ying M, Zhang W, Yu H, Lu X Q, Feng J X, Fan Y X, Zhu Y T, Chen D Q. 2014. An overview of the China meteorological administration tropical cyclone database. J. Atmos. Oceanic Technol., 31(2): 287–301,  https://doi.org/10.1175/JTECH-D-12-00119.1.CrossRefGoogle Scholar
  59. Zakharov V E. 1968. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys., 9(2): 190–194,  https://doi.org/10.1007/BF00913182.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.First Institute of Oceanography (FIO)Ministry of Natural Resources (MNR)QingdaoChina
  2. 2.Ocean University of ChinaQingdaoChina

Personalised recommendations