Effect of the drag coefficient on a typhoon wave model

  • Zhifeng Wang
  • Yijie Gong
  • Junnan Cui
  • Sheng Dong
  • Kejian WuEmail author


The effect of the drag coefficient on a typhoon wave model is investigated. Drag coefficients for Pingtan Island are derived from the progress of nine typhoons using COARE 3.0 software. The wind parameters are obtained using the Weather Research and Forecasting model. The simulation of wind agrees well with observations. Typhoon wave fields are then simulated using the third-generation wave model SWAN. The wave model includes exponential and linear growths of the wind input, which determine the wave-growth mode. A triple triangular mesh is adopted with spatial resolution as fine as 100 m nearshore. The SWAN model performs better when using the new drag coefficient rather than the original coefficient.


drag coefficient typhoon wind typhoon wave numerical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Glenn Pennycook, MSc, from Liwen Bianji, Edanz Group China (, for editing the English text of a draft of this manuscript.


  1. Alves J H G M, Banner M L. 2003. Performance of a saturation-based dissipation-rate source term in modeling the fetch-limited evolution of wind waves. Journal of Physical Oceanography, 33(6): 1 274–1 298.CrossRefGoogle Scholar
  2. Booij N, Ris R C, Holthuijsen L H. 1999. A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4): 7 649–7 666.CrossRefGoogle Scholar
  3. Bricheno L M, Soret A, Wolf J, Jorba O, Baldasano J M. 2013. Effect of high-resolution meteorological forcing on nearshore wave and current model performance. Journal of Atmospheric and Oceanic Technology, 30(6): 1 021–1 037.CrossRefGoogle Scholar
  4. Cavaleri L, Malanotte Rizzoli P. 1981. Wind wave prediction in shallow water: theory and applications. Journal of Geophysical Research: Oceans, 86(C11): 10 961–10 973.CrossRefGoogle Scholar
  5. Chalikov D, Babanin A V. 2012. Simulation of wave breaking in one-dimensional spectral environment. Journal of Physical Oceanography, 42(11): 1 745–1 761.CrossRefGoogle Scholar
  6. Charnock H. 1955. Wind stress on a water surface. Quarterly Journal of the Royal Meteorological Society, 81(350): 639–640.CrossRefGoogle Scholar
  7. Decharme B. 2007. Influence of runoff parameterization on continental hydrology: comparison between the Noah and the ISBA land surface models. Journal of Geophysical Research: Atmospheres, 112(D19): D19108.CrossRefGoogle Scholar
  8. Dietrich J C, Zijlema M, Allier P E, Holthuijsen L H, Booij N, Meixner J D, Proft J K, Dawson C N, Bender C J, Naimaster A, Smith J M, Westerink J J. 2013. Limiters for spectral propagation velocities in SWAN. Ocean Modelling, 70: 85–102.CrossRefGoogle Scholar
  9. Donelan M A, Haus B K, Reul N, Plant W J, Stiassnie M, Graber H C, Brown O B, Saltzman E S. 2004. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophysical Research Letters, 31(18): L18306.CrossRefGoogle Scholar
  10. Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences, 46(20): 3 077–3 107.CrossRefGoogle Scholar
  11. Eldeberky Y. 1996. Nonlinear Transformation of Wave Spectra in the Nearshore Zone. Ph. D. thesis, Delft University of Technology, Department of Civil Engineering, The Netherlands.Google Scholar
  12. Fairall C W, Bradley E F, Hare J E, Grachev A A, Edson J B. 2003. Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. Journal of Climate, 16(4): 571–591.CrossRefGoogle Scholar
  13. Fan Y L, Rogers W E. 2016. Drag coefficient comparisons between observed and model simulated directional wave spectra under hurricane conditions. Ocean Modelling, 102: 1–13.CrossRefGoogle Scholar
  14. Hasselmann K. 1974. On the spectral dissipation of ocean waves due to white capping. Boundary-Layer Meteorology, 6(1–2): 107–127.CrossRefGoogle Scholar
  15. Hasselmann S, Hasselmann K, Allender J H, Barnett T P. 1985. Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: parameterizations of the nonlinear energy transfer for application in wave models. Journal of Physical Oceanography, 15(11): 1 378–1 391.CrossRefGoogle Scholar
  16. Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review, 134(9): 2 318–2 341.CrossRefGoogle Scholar
  17. Janssen P A E M. 1991. Quasi-linear theory of wind-wave generation applied to wave forecasting. Journal of Physical Oceanography, 21(11): 1 631–1 642.CrossRefGoogle Scholar
  18. Kain J S, Fritsch J M. 1990. A one-dimensional entraining/detraining plume model and its application in convective parameterization. Journal of the Atmospheric Sciences, 47(23): 2 784–2 802.CrossRefGoogle Scholar
  19. Kim Y, Jang S C, Lim T J. 2015. Hazard analysis of typhoon-related external events using extreme value theory. Nuclear Engineering and Technology, 47(1): 59–65.CrossRefGoogle Scholar
  20. Komen G J, Hasselmann K, Hasselmann K. 1984. On the existence of a fully developed wind-sea spectrum. Journal of Physical Oceanography, 14(8): 1 271–1 285.CrossRefGoogle Scholar
  21. Lee H S. 2015. Evaluation of WAVEWATCH III performance with wind input and dissipation source terms using wave buoy measurements for October 2006 along the east Korean coast in the East Sea. Ocean Engineering, 100: 67–82.CrossRefGoogle Scholar
  22. Mlawer E J, Taubman S J, Brown P D, Iacono M J, Clough S A. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research: Atmospheres, 102(D14): 16 663–16 682.CrossRefGoogle Scholar
  23. Moeini M H, Etemad-Shahidi A, Chegini V. 2010. Wave modeling and extreme value analysis off the northern coast of the Persian Gulf. Applied Ocean Research, 32(2): 209–218.CrossRefGoogle Scholar
  24. Oost W A, Komen G J, Jacobs C M J, Van Oort C. 2002. New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. Boundary-Layer Meteorology, 103(3): 409–438.CrossRefGoogle Scholar
  25. Rascle N, Ardhuin F. 2013. A global wave parameter database for geophysical applications. Part 2: model validation with improved source term parameterization. Ocean Modelling, 70: 174–188.CrossRefGoogle Scholar
  26. Ris R C, Holthuysen L H, Booij N. 1999. A third-generation wave model for coastal regions: 2. verification. Journal of Geophysical Research: Oceans, 104(C4): 7 667–7 681.CrossRefGoogle Scholar
  27. Roland A, Ardhuin F. 2014. On the developments of spectral wave models: numerics and parameterizations for the coastal ocean. Ocean Dynamics, 64(6): 833–846.CrossRefGoogle Scholar
  28. Rusu E, Pilar P, Guedes Soares C. 2008. Evaluation of the wave conditions in Madeira archipelago with spectral models. Ocean Engineering, 35(13): 1 357–1 371.CrossRefGoogle Scholar
  29. Siadatmousavi S M, Jose F, Stone G W. 2012. On the importance of high frequency tail in third generation wave models. Coastal Engineering, 60: 248–260.CrossRefGoogle Scholar
  30. Skamarock W C, Klemp J B, Dudhia J, Gill D O, Barker D M, Duda M G, Huang X Y, Wang W, Powers J G. 2008. A Description of the Advanced Research WRF Version 3. NCAR/TN-475+STR NCAR/TN-475+STR. National Center for Atmospheric Research, Boulder, Colorado, USA. p. 1–113.Google Scholar
  31. Smith S D, Banke E G. 1975. Variation of the sea surface drag coefficient with wind speed. Quarterly Journal of the Royal Meteorological Society, 101(429): 665–673.CrossRefGoogle Scholar
  32. Smith S D. 1988. Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. Journal of Geophysical Research: Oceans, 93(C12): 15 467–15 472.CrossRefGoogle Scholar
  33. Takagaki N, Komori S, Suzuki N, Iwano K, Kurose R. 2016. Mechanism of drag coefficient saturation at strong wind speeds. Geophysical Research Letters, 43(18): 9 829–9 835.CrossRefGoogle Scholar
  34. Taylor P K, Yelland M J. 2001. The dependence of sea surface roughness on the height and steepness of the waves. Journal of Physical Oceanography, 31(2): 572–590.CrossRefGoogle Scholar
  35. Tolman H L. 1992. Effects of numerics on the physics in a third-generation wind-wave model. Journal of Physical Oceanography, 22(10): 1 095–1 111.CrossRefGoogle Scholar
  36. Tsai Y S, Chang W T, Yu C M, Yang W C. 2018. General sea state and drag coefficient observed near shore in Taiwan Strait. Procedia IUTAM, 26: 204–213.CrossRefGoogle Scholar
  37. Vickers D, Mahrt L, Andreas E L. 2013. Estimates of the 10-m neutral sea surface drag coefficient from aircraft eddy-covariance measurements. Journal of Physical Oceanography, 43(2): 301–310.CrossRefGoogle Scholar
  38. WAMDI Group 1988. The WAM ModelA third gen-eration ocean wave prediction model. Journal of Physical Oceanography, 18(12): 1 775–1 810.CrossRefGoogle Scholar
  39. Wang Y, Jiang X W. 2012. Improvement and application of a saturation based wave dissipation function in SWAN model. Acta Oceanologica Sinica, 31(1): 24–32.CrossRefGoogle Scholar
  40. Wu J. 1982. Wind-stress coefficients over sea surface from breeze to hurricane. Journal of Geophysical Research: Oceans, 87(C12): 9 704–9 706.CrossRefGoogle Scholar
  41. Yan L. 1987. An Improved Wind Input Source Term for Third Generation Ocean Wave Modelling. Scientific Report WR-No87-8, KNMI, De Bilt, The Netherlands.Google Scholar
  42. Zhao D L, Li M X. 2018. Dependence of wind stress across an air-sea interface on wave states. Journal of Oceanography, 1–17. (in press)Google Scholar
  43. Zijlema M, van der Westhuysen A J. 2005. On convergence behaviour and numerical accuracy in stationary SWAN simulations of nearshore wind wave spectra. Coastal Engineering, 52(3): 237–256.CrossRefGoogle Scholar
  44. Zijlema M, van Vledder G P, Holthuijsen L H. 2012. Bottom friction and wind drag for wave models. Coastal Engineering, 65: 19–26.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhifeng Wang
    • 1
  • Yijie Gong
    • 1
  • Junnan Cui
    • 1
  • Sheng Dong
    • 1
  • Kejian Wu
    • 1
    Email author
  1. 1.Ocean University of ChinaQingdaoChina

Personalised recommendations