Advertisement

Off spring of aged mothers of rotifer Brachionus calycifl orus shows lower sexual propensity than their elder siblings under crowded conditions

  • Wenjie Li
  • Cuijuan NiuEmail author
  • Xiaoxuan Li
Article
  • 23 Downloads

Abstract

Maternal eff ects are one of the most interesting topics in evolutionary ecology as they can aff ect the rate of evolution and population dynamics by phenotypic manipulation of off spring related to fi tness. At present, studies examining the interaction between maternal environment eff ects and maternal age (birth order) eff ects are scarce. We designed an experiment to reveal whether environmentally induced maternal manipulation works equally on off spring across birth orders in rotifer Brachionus calyciflorus. In the experiment, newborn amictic mothers (F0 ) were cultured parallelly in low (LD) and high (HD) population density. Off spring (F1 ) of young (YF0 ) and old mothers (OF0 ) in both LD and HD groups were cultured under a crowded condition and the mixis ratios of both F 1 and F 2 were examined. Results show that F1 from HD-YF0 had a signifi cantly higher mixis ratio and those amictic ones produced daughters (F2 ) with higher mixis ratio in response to crowding than those from HD-OF0. In contrast, no such diff erences among F1 siblings were found in the LD-F 0 group. Therefore, the eff ect of maternal age on the sexual propensity of the off spring can be aff ected independently by the maternal population density.

Key word

rotifer Brachionus calyciflorus sexual propensity birth order eff ect maternal environment mixis ratio 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekseev V, Lampert W. 2004. Maternal effects of photoperiod and food level on life history characteristics of the Cladoceran Daphnia Pulicaria Forbes. Hydrobilogia, 526 (1): 225–230, https://doi.org/10.1023/B:HYDR.0000041600.16226.12.CrossRefGoogle Scholar
  2. Berkeley S A, Chapman C, Sogard S M. 2004. Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology, 85 (5): 1 258–1 264, https://doi.org/10.1890/03–0706.CrossRefGoogle Scholar
  3. Bernardo J. 1996. The particular maternal effect of propagule size, especially egg size: patterns, models, quality of evidence and interpretations. Integr. Comp. Biol., 36 (2): 216–236, https://doi.org/10.1093/icb/36.2.216.Google Scholar
  4. Carmona M J, Serra M, Miracle M R. 1993. Relationships between mixis in Brachionus plicatilis and preconditioning of culture medium by crowding. Hydrobiologia, 255–256 (1): 145–152, https://doi.org/10.1007/BF00025832.CrossRefGoogle Scholar
  5. Dantzer B, Newman A E M, Boonstra R, Palme R, Boutin S, Humphries M M, McAdam A G. 2013. Density triggers maternal hormones that increase adaptive offspring growth in a wild mammal. Science, 340 (6137): 1 215–1 217, https://doi.org/10.1126/science.1235765.CrossRefGoogle Scholar
  6. FACHB–2016 (Freshwater Algae Culture Collection of the Institute of Hydrobiology). 2016. SE (Brostol’s solution) medium. http://algae.ihb.ac.cn/Products/ProductDetail. aspx?product=3.Google Scholar
  7. Fox C W. 1993. The influence of maternal age and mating frequency on egg size and offspring performance in Callosobruchus maculatus (Coleoptera: Bruchidae). Oecologia, 96 (1): 139–146, https://doi.org/10.1007/BF00318042.CrossRefGoogle Scholar
  8. Fussmann G F, Ellner S P, Hairston N G. 2003. Evolution as a critical component of plankton dynamics. P roc. Roy. Soc. B Biol. Sci., 270 (1519): 1 015–1 022, https://doi.org/10. 1098/rspb.2003.2335.CrossRefGoogle Scholar
  9. Fussmann G F, Kramer G, Labib M. 2007. Incomplete induction of mixis in Brachionus calyciflorus: patterns of reproduction at the individual level. Hydrobi o logia, 593 (1): 111–119, https://doi.org/10.1007/s10750–007–9041–1.CrossRefGoogle Scholar
  10. Gilbert J J, McPeek M A. 2013. Maternal age and spine development in a rotifer: ecological implications and evolution. Ecology, 94 (10): 2 166–2 172, https://doi.org/10.1890/13–0768.1.CrossRefGoogle Scholar
  11. Gilbert J J, Schröder T. 2007. Intraclonal variation in propensity for mixis in several rotifers: variation among females and with maternal age. Hydrobiologia, 593 (1): 121–128, https://doi.org/10.1007/s10750–007–9040–2.CrossRefGoogle Scholar
  12. Gilbert J J. 1974. Dormancy in rotifers. Trans. Am. Microsc. Soc., 93 (4): 490–513, https://doi.org/10.2307/3225154.CrossRefGoogle Scholar
  13. Gilbert J J. 2002. Endogenous regulation of environmentally induced sexuality in a rotifer: a multigenerational parental effect induced by fertilisation. Freshw. Biol., 47 (9): 1 633–1 641, https://doi.org/10.1046/j.1365–2427.2002.00900.x.CrossRefGoogle Scholar
  14. Gilbert J J. 2003. Environmental and endogenous control of sexuality in a rotifer life cycle: developmental and population biology. Evol. Dev., 5 (1): 19–24, https://doi. org/10.1046/j.1525–142X.2003.03004.x.CrossRefGoogle Scholar
  15. Gilbert J J. 2004. Population density, sexual reproduction and diapause in monogonont rotifers: new data for Brachionus and a review. J. Limnol., 63 (1S): 32–36, https://doi.org/10.4081/jlimnol.2004.s1.32.CrossRefGoogle Scholar
  16. Gilbert J J. 2007. Induction of mictic females in the rotifer Brachionus: oocytes of amictic females respond individually to population–density signal only during oogenesis shortly before oviposition. Freshw. Biol., 52 (8): 1 417–1 426, https://doi.org/10.1111/j.1365–2427.2007.01782.x.CrossRefGoogle Scholar
  17. Gillespie D O S, Russell A F, Lummaa V. 2013. The effect of maternal age and reproductive history on offspring survival and lifetime reproduction in preindustrial humans. Evolution, 67 (7): 1 964–1 974, https://doi.org/10. 1111/evo.12078.CrossRefGoogle Scholar
  18. Hercus M J, Hoffmann A A. 2000. Maternal and grandmaternal age influence offspring fitness in Drosophila. P roc. Roy. Soc. B Biol. Sci., 267 (1457): 2 105–2 110, https://doi. org/10.1098/rspb.2000.1256.CrossRefGoogle Scholar
  19. JoséCarmona M, Serra M, Miracle M R. 1994. Effect of population density and genotype on life–history traits in the rotifer Brachionus plicatilis O.F. Müller. J. Exp. Mar. Biol. Ecol., 182 (2): 223–235, https://doi.org/10.1016/0022–0981(94)90053–1.CrossRefGoogle Scholar
  20. Kern S, Ackermann M, Stearns S C, Kawecki T J. 2001. Decline in offspring viability as a manifestation of aging in Drosophila melanogaster. Evolution, 55 (9): 1 822–1 831, https://doi.org/10.1111/j.0014–3820.2001.tb00831.x.CrossRefGoogle Scholar
  21. Kilham S S, Kreeger D A, Lynn S G, Goulden C E, Herrera L. 1998. COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia, 377 (1–3): 147–159, https://doi.org/10.1023/A:1003231628456.CrossRefGoogle Scholar
  22. Kuijper B, Hoyle R B. 2015. When to rely on maternal effects and when on phenotypic plasticity? Evolution, 69 (4): 950–968, https://doi.org/10.1111/evo.12635.CrossRefGoogle Scholar
  23. Lansing A I. 1947. A transmissible, cumulative, and reversible factor in aging. J. Gerontol., 2 (3): 228–239, https://doi. org/10.1093/geronj/2.3.228.CrossRefGoogle Scholar
  24. Lints F A, Hoste C. 1977. The Lansing effect revisited. II—Cumulative and spontaneously reversible parental age effects on fecundity in Drosophila melanogaster. Evolution, 31 (2): 387–404, https://doi.org/10.1111/j.1558–5646.1977. tb01020.x.Google Scholar
  25. Mcintyre G S, Gooding R H. 2000. Effects of maternal age on larval competitiveness in house flies. Heredity, 85 (5): 480–489, https://doi.org/10.1046/j.1365–2540.2000.00787.x.CrossRefGoogle Scholar
  26. Mousseau T A, Fox C W. 1998. The adaptive significance of maternal effects. Trends Ecol. Evol., 13 (10): 403–407, https://doi.org/10.1016/S0169–5347(98)01472–4.CrossRefGoogle Scholar
  27. Opit G P, Throne J E. 2007. Influence of maternal age on the fitness of progeny in the rice weevil, Sitophilus oryzae (Coleoptera: Curculionidae). Environ. Entomol., 36 (1): 83–89, https://doi.org/10.1603/0046–225X(2007)36[83: IOMAOT]2.0.CO;2.CrossRefGoogle Scholar
  28. Plaistow S J, Shirley C, Collin H, Cornell S J, Harney E D. 2015. Offspring provisioning explains clone–specific maternal age effects on life history and life span in the water flea, Daphnia pulex. Am. Nat., 186 (3): 376–389, https://doi.org/10.1086/682277.CrossRefGoogle Scholar
  29. Raveh S, Vogt D, Kölliker M. 2016. Maternal programming of offspring in relation to food availability in an insect (Forficula auricularia). P roc. Roy. Soc. B Biol. Sci., 283 (1828): 20152936, https://doi.org/10.1098/rspb.2015.2936.CrossRefGoogle Scholar
  30. Rougier C, Pourriot R. 1977. Aging and control of the reproduction in Brachionus calyciflorus (Pallas) (Rotatoria). Exp. Geront ol., 12 (3–4): 137–151, https://doi. org/10.1016/0531–5565(77)90022–5.CrossRefGoogle Scholar
  31. Schröder T. 2005. Diapause in monogonont rotifers. Hydrobiologia, 546 (1): 291–306, https://doi.org/10.1007/s10750–005–4235–x.CrossRefGoogle Scholar
  32. Serra M, Snell T W, King C E. 2004. The timing of sex in cyclically parthenogenetic rotifers. In: Moya A, Font E eds. Evolution: From Molecules to Ecosystems. Oxford University Press, Oxford. p.135–146.Google Scholar
  33. Snell T W, Boyer E M. 1988. Thresholds for mictic female production in the rotifer Brachionus plicatilis (Muller). J. Exp. Mar. Biol. Ecol., 124 (2): 73–85, https://doi.org/10. 1016/0022–0981(88)90112–8.CrossRefGoogle Scholar
  34. Snell T W, Kubanek J, Carter W, Payne A B, Kim J, Hicks M K, Stelzer C P. 2006. A protein signal triggers sexual reproduction in Brachionus plicatilis (Rotifera). Mar. Biol., 149 (4): 763–773, https://doi.org/10.1007/s00227–006–0251–2.CrossRefGoogle Scholar
  35. Snell T W. 1998. Chemical ecology of rotifers. Hydrobiologia, 387–388 (0): 267–276, https://doi.org/10.1023/A:1017087003334.CrossRefGoogle Scholar
  36. Stelzer C P, Snell T W. 2003. Induction of sexual reproduction in Brachionus plicatilis (Monogononta, Rotifera) by a density–dependent chemical cue. Limnol. Oceanogr., 48 (2): 939–943, https://doi.org/10.4319/lo.2003.48.2.0939.CrossRefGoogle Scholar
  37. Stelzer C P. 2011. The cost of sex and competition between cyclical and obligate parthenogenetic rotifers. Am. Nat., 177 (2): e43–E53, https://doi.org/10.1086/657685.CrossRefGoogle Scholar
  38. Storm J J, Lima S L. 2010. Mothers forewarn offspring about predators: a transgenerational maternal effect on behavior. Am. Nat., 175 (3): 382–390, https://doi.org/10.1086/650443.CrossRefGoogle Scholar
  39. Sun D, Niu C J. 2012. Maternal crowding can enhance the propensity of offspring to produce mictic females in the rotifer Brachionus calyciflorus. J. Plankton Res., 34 (8): 732–737, https://doi.org/10.1093/plankt/fbs044.CrossRefGoogle Scholar
  40. Tollrian R. 1995. Predator–induced morphological defenses: costs, life history shifts, and maternal effects in Daphnia pulex. Ecology, 76 (6): 1 691–1 705, https://doi.org/10. 2307/1940703.CrossRefGoogle Scholar
  41. Uller T, English S, Pen I. 2015. When is incomplete epigenetic resetting in germ cells favoured by natural selection? Proc. Roy. Soc. B Biol. Sci., 282 (1811): 20150682, https://doi.org/10.1098/rspb.2015.0682.CrossRefGoogle Scholar
  42. Uller T, Nakagawa S, English S. 2013. Weak evidence for anticipatory parental effects in plants and animals. J. Evol. Biol., 26 (10): 2 161–2 170, https://doi.org/10.1111/jeb. 12212.CrossRefGoogle Scholar
  43. Uller T. 2008. Developmental plasticity and the evolution of parental effects. Trends Ecol. Evol., 23 (8): 432–438, https://doi.org/10.1016/j.tree.2008.04.005.CrossRefGoogle Scholar
  44. Yin X W, Zhao N X, Wang B H, Li W J, Zhang Z N. 2015. Transgenerational and within–generational induction of defensive morphology in Brachionus calyciflorus (rotifera): importance of maternal effect. Hydrobiologia, 742 (1): 313–325, https://doi.org/10.1007/s10750–014–1995–1.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life SciencesBeijing Normal UniversityBeijingChina

Personalised recommendations