Advertisement

Spatiotemporal distributions and environmental drivers of diversity and community structure of nosZ-type denitrifi ers and anammox bacteria in sediments of the Bohai Sea and North Yellow Sea, China

  • Youjun Cai
  • Xiaoli Zhang
  • Guihao Li
  • Jun Dong
  • Anjing Yang
  • Guangyu WangEmail author
  • Xiaojian ZhouEmail author
Article
  • 11 Downloads

Abstract

Denitrifi cation and anammox processes are major nitrogen removal processes in coastal ecosystems. However, the spatiotemporal dynamics and driving factors of the diversity and community structure of involved functional bacteria have not been well illustrated in coastal environments, especially in human-dominated ecosystems. In this study, we investigated the distributions of denitrifi ers and anammox bacteria in the eutrophic Bohai Sea and the northern Yellow Sea of China in May and November of 2012 by constructing clone libraries employing nosZ and 16S rRNA gene biomarkers. The diversity of nosZ-denitrifi er was much higher at the coastal sites compared with the central sites, but not signifi cant among basins or seasons. Alphaproteobacteria were predominant and prevalent in the sediments, whereas Betaproteobacteria primarily occurred at the site near the Huanghe (Yellow) River estuary. Anammox bacteria Candidatus Scalindua was predominant in the sediments, and besides, Candidatus Brocadia and Candidatus Kuenenia were also detected at the site near the Huanghe River estuary that received strong riverine and anthropogenic impacts. Salinity was the most important in structuring communities of nosZ-denitrifi er and anammox bacteria. Additionally, anthropogenic perturbations (e.g. nitrogen overloading and consequent high primary productivity, and heavy metal discharges) contributed signifi cantly to shaping community structures of denitrifi er and anammox bacteria, suggesting that anthropogenic activities would infl uence and even change the ecological function of coastal ecosystems.

Key word

nosZ-denitrifier anammox community structure distribution anthropogenic perturbations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

xxxx

References

  1. Abascal F, Zardoya R, Posada D. 2005. ProtTest: selection of best–fit models of protein evolution. Bioinformatics, 21 (9): 2 104–2 105, https://doi.org/10.1093/bioinformatics/bti263.Google Scholar
  2. Amano T, Yoshinaga I, Okada K, Yamagishi T, Ueda S, Obuchi A, Sako Y, Suwa Y. 2007. Detection of anammox activity and diversity of anammox bacteria–related 16S rRNA genes in coastal marine sediment in Japan. Microbes and Environments, 22 (3): 232–242, https://doi.org/10.1264/jsme2.22.232.Google Scholar
  3. Anderson D M, Glibert P M, Burkholder J M. 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries, 25 (4): 704–726, https://doi.org/10.1007/bf02804901.Google Scholar
  4. Babbin A R, Jayakumar A, Ward B B. 2016. Organic matter loading modifies the microbial community responsible for nitrogen loss in estuarine sediments. Microbial Ecology, 71 (3): 555–565, https://doi.org/10.1007/s00248–015–0693–5.Google Scholar
  5. Babbin A R, Keil R G, Devol A H, Ward B B. 2014. Organic matter stoichiometry, flux, and oxygen control nitrogen loss in the ocean. Science, 344 (6182): 406–408, https://doi.org/10.1126/science.1248364.Google Scholar
  6. Bale N J, Villanueva L, Fan H X, Stal L J, Hopmans E C, Schouten S, Damsté J S S. 2014. Occurrence and activity of anammox bacteria in surface sediments of the southern North Sea. FEMS Microbiology Ecology, 89 (1): 99–110, https://doi.org/10.1111/1574–6941.12338.Google Scholar
  7. Bouvier T, Del Giorgio P A. 2003. Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports. FEMS Microbiology Ecology, 44 (1): 3–15, https://doi.org/10.1016/S0168–6496(02)00461–0.Google Scholar
  8. Brin L D, Giblin A E, Rich J J. 2014. Environmental controls of anammox and denitrification in southern New England estuarine and shelf sediments. Limnology and Oceanography, 59 (3): 851–860, https://doi.org/10.4319/lo.2014.59.3.0851.Google Scholar
  9. Bürgi H R, Stadelmann P. 2002. Alteration of phytoplankton structure in Lake Lucerne due to trophic conditions. Aquatic Ecosystem Health & Management, 5 (1): 45–59, https://doi.org/10.1080/14634980260199954.Google Scholar
  10. Camargo J A, Alonso Á. 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International, 32 (6): 831–849, https://doi.org/10.1016/j. envint.2006.05.002.Google Scholar
  11. Codispoti L A. 2007. An oceanic fixed nitrogen sink exceeding 400 Tg Na–1 vs the concept of homeostasis in the fixednitrogen inventory. Biogeosciences, 4 (2): 233–253, https://doi.org/10.5194/bg–4–233–2007.Google Scholar
  12. Crump B C, Armbrust E V, Baross J A. 1999. Phylogenetic analysis of particle–attached and free–living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Applied and Environmental Microbiology, 65 (7): 3 192–3 204.Google Scholar
  13. Dale O R, Tobias C R, Song B. 2009. Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in Cape Fear River Estuary. Environmental Microbiology, 11 (5): 1 194–1 207, https://doi.org/10.1111/j.1462–2920.2008.01850.x.Google Scholar
  14. Dang H Y, Chen R P, Wang L, Guo L Z, Chen P P, Tang Z W, Tian F, Li S Z, Klotz M G. 2010. Environmental factors shape sediment anammox bacterial communities in hypernutrified Jiaozhou Bay, China. Applied and Environmental Microbiology, 76 (21): 7 036–7 047, https://doi.org/10.1128/aem.01264–10.Google Scholar
  15. Dang H Y, Zhou H X, Zhang Z N, Yu Z S, Hua E, Liu X S, Jiao N Z. 2013. Molecular detection of Candidatus Scalindua Pacifica and environmental responses of sediment anammox bacterial community in the Bohai Sea, China. PLoS One, 8 (4): e61330. https://doi.org/10.1371/journal. pone.0061330.Google Scholar
  16. El Hanafy A A E M, Anwar Y, Mohamed S A, Al–Garni S M S, Sabir J S M, AbuZinadah O A, Al Mehdar H, Alfaidi A W, Ahmed M M M. 2016. Isolation and identification of bacterial consortia responsible for degrading oil spills from the coastal area of Yanbu, Saudi Arabia. Biotechnology & Biotechnological Equipment, 30 (1): 69–74, https://doi.org/10.1080/13102818.2015.1086282.Google Scholar
  17. Feng B W, Li X R, Wang J H, Hu Z Y, Meng H, Xiang L Y, Quan Z X. 2009. Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea. FEMS Microbiology Ecology, 70 (2): 236–248, https://doi.org/10.1111/j.1574–6941.2009.00772.x.Google Scholar
  18. Fernandes S O, Michotey V D, Guasco S, Bonin P C, Bharathi P A L. 2012. Denitrification prevails over anammox in tropical mangrove sediments (Goa, India). Marine Environmental Research, 74: 9–19, https://doi.org/10. 1016/j.marenvres.2011.11.008.Google Scholar
  19. Galloway J N, Townsend A R, Erisman J W, Bekunda M, Cai Z C, Freney J R, Martinelli L A, Seitzinger S P, Sutton M A. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320 (5878): 889–892, https://doi.org/10.1126/science. 1136674.Google Scholar
  20. Goecke F, Thiel V, Wiese J, Labes A, Imhoff J F. 2013. Algae as an important environment for bacteria–Phylogenetic relationships among new bacterial species isolated from algae. Phycologia, 52 (1): 14–24, https://doi.org/10.2216/12–24.1.Google Scholar
  21. Gonzalez–Silva B M, Rønning A J, Andreassen I K, Bakke I, Cervantes F J, Østgaard K, Vadstein O. 2017. Changes in the microbial community of an anammox consortium during adaptation to marine conditions revealed by 454 pyrosequencing. Applied Microbiology and Biotechnology, 101 (12): 5 149–5 162, https://doi.org/10. 1007/s00253–017–8160–5.Google Scholar
  22. Hall T. 2011. BioEdit: an important software for molecular biology. GERF Bulletin of Biosciences, 2 (1): 60–61.Google Scholar
  23. Hietanen S, Kuparinen J. 2008. Seasonal and short–term variation in denitrification and anammox at a coastal station on the Gulf of Finland, Baltic Sea. Hydrobiologia, 596 (1): 67–77, https://doi.org/10.1007/s10750–007–9058–5.Google Scholar
  24. Hou L J, Zheng Y L, Liu M, Gong J, Zhang X L, Yin G Y, You L. 2013. Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze Estuary. Journal of Geophysical Research: Biogeosciences, 118 (3): 1 237–1 246, https://doi.org/10.1002/jgrg.20108.Google Scholar
  25. Hu L M, Shi X F, Bai Y Z, Qiao S Q, Li L, Yu Y G, Yang G, Ma D Y, Guo Z G. 2016. Recent organic carbon sequestration in the shelf sediments of the Bohai Sea and Yellow Sea, China. Journal of Marine Systems, 155: 50–58, https://doi. org/10.1016/j.jmarsys.2015.10.018.Google Scholar
  26. Humbert S, Tarnawski S, Fromin N, Mallet M P, Aragno M, Zopfi J. 2010. Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. The ISME Journal, 4 (3): 450–454, https://doi.org/10.1038/ismej.2009.125.Google Scholar
  27. Jones C M, Hallin S. 2010. Ecological and evolutionary factors underlying global and local assembly of denitrifier communities. The ISME Journal, 4 (5): 633–641, https://doi.org/10.1038/ismej.2009.152.Google Scholar
  28. Kartal B, Rattray J, Van Niftrik L A, Van De Vossenberg J, Schmid M C, Webb R I, Schouten S, Fuerst J A, Damsté J S, Jetten M S M, Strous M. 2007. Candidatus “Anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Systematic and Applied Microbiology, 30 (1): 39–49, https://doi.org/10.1016/j.syapm.2006.03.004.Google Scholar
  29. Kartal B, Van Niftrik L, Rattray J, Van De Vossenberg J L C M, Schmid M C, Sinninghe Damsté J, Jetten M S M, Strous M. 2008. Candidatus ‘Brocadia fulgida’: an autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiology Ecology, 63 (1): 46–55, https://doi.org/10.1111/j.1574–6941.2007.00408.x.Google Scholar
  30. Labbé N, Parent S, Villemur R. 2004. Nitratireductor aquibiodomus gen. nov., sp. nov., a novel α–proteobacterium from the marine denitrification system of the Montreal Biodome (Canada). International Journal of Systematic and Evolutionary Microbiology, 54 (1): 269–273, https://doi.org/10.1099/ijs.0.02793–0.Google Scholar
  31. Lai Q L, Yu Z W, Wang J N, Zhong H Z, Sun F Q, Wang L P, Wang B J, Shao Z Z. 2011a. Nitratireductor pacificus sp. nov., isolated from a pyrene–degrading consortium. International Journal of Systematic and Evolutionary Microbiology, 61 (6): 1 386–1 391, https://doi.org/10.1099/ijs.0.024356–0.Google Scholar
  32. Lai Q L, Yu Z W, Yuan J, Sun F Q, Shao Z Z. 2011b. Nitratireductor indicus sp. nov., isolated from deep–sea water. International Journal of Systematic and Evolutionary Microbiology, 61 (2): 295–298, https://doi. org/10.1099/ijs.0.022962–0.Google Scholar
  33. Li M, Cao H L, Hong Y G, Gu J D. 2011a. Seasonal dynamics of anammox bacteria in estuarial sediment of the Mai Po Nature Reserve revealed by analyzing the 16S rRNA and hydrazine oxidoreductase (hzo) genes. Microbes and Environments, 26 (1): 15–22, https://doi.org/10.1264/jsme2.ME10131.Google Scholar
  34. Li M, Ford T, Li X Y, Gu J D. 2011b. Cytochrome cd1–containing nitrite reductase encoding gene nirS as a new functional biomarker for detection of anaerobic ammonium oxidizing (anammox) bacteria. Environmental Science & Technology, 45 (8): 3 547–3 553, https://doi. org/10.1021/es103826w.Google Scholar
  35. Li M, Hong Y G, Klotz M G, Gu J D. 2010. A comparison of primer sets for detecting 16S rRNA and hydrazine oxidoreductase genes of anaerobic ammonium–oxidizing bacteria in marine sediments. Applied Microbiology and Biotechnology, 86 (2): 781–790, https://doi.org/10.1007/s00253–009–2361–5.Google Scholar
  36. Lipsewers Y A, Hopmans E C, Meysman F J R, Damsté J S S, Villanueva L. 2016. Abundance and diversity of denitrifying and anammox bacteria in seasonally hypoxic and sulfidic sediments of the saline lake Grevelingen. Frontiers in Microbiology, 7: 1 661, https://doi.org/10. 3389/fmicb.2016.01661.Google Scholar
  37. Liu J W, Fu B B, Yang H M, Zhao M X, He B Y, Zhang X H. 2015. Phylogenetic shifts of bacterioplankton community composition along the Pearl Estuary: the potential impact of hypoxia and nutrients. Frontiers in Microbiology, 6: 64, https://doi.org/10.3389/fmicb.2015.00064.Google Scholar
  38. Liu X D, Tiquia S M, Holguin G, Wu L Y, Nold S C, Devol A H, Luo K, Palumbo A V, Tiedje J M, Zhou J Z. 2003. Molecular diversity of denitrifying genes in continental margin sediments within the oxygen–deficient zone offthe Pacific coast of Mexico. Applied and Environmental Microbiology, 69 (6): 3 549–3 560, https://doi.org/10.1128/aem.69.6.3549–3560.2003.Google Scholar
  39. Magalhäes C M, Wiebe W J, Joye S B, Bordalo A A. 2005. Inorganic nitrogen dynamics in intertidal rocky biofilms and sediments of the Douro River estuary (Portugal). Estuaries, 28 (4): 592–606, https://doi.org/10.1007/BF02696070.Google Scholar
  40. Magalhães C, Bano N, Wiebe W J, Bordalo A A, Hollibaugh J T. 2008. Dynamics of nitrous oxide reductase genes (nosZ) in intertidal rocky biofilms and sediments of the Douro River Estuary (Portugal), and their relation to N–biogeochemistry. Microbial Ecology, 55 (2): 259–269, https://doi.org/10.1007/s00248–007–9273–7.Google Scholar
  41. Malovanyy A, Plaza E, Trela J, Malovanyy M. 2015. Ammonium removal by partial nitritation and anammox processes from wastewater with increased salinity. Environmental Technology, 36 (5): 595–604, https://doi.or g/10.1080/09593330.2014.953601.Google Scholar
  42. Mills H J, Hunter E, Humphrys M, Kerkhof L, McGuinness L, Huettel M, Kostka J E. 2008. Characterization of nitrifying, denitrifying, and overall bacterial communities in permeable marine sediments of the northeastern Gulf of Mexico. Applied and Environmental Microbiology, 74 (14): 4 440–4 453, https://doi.org/10.1128/aem.02692–07.Google Scholar
  43. Pan G C, Qiu S Y, Liu X, Hu X K. 2015. Estimating the economic damages from the Penglai 19–3 oil spill to the Yantai fisheries in the Bohai Sea of northeast China. Marine Policy, 62: 18–24, https://doi.org/10.1016/j. marpol.2015.08.007.Google Scholar
  44. Piao Z, Zhang W W, Ma S, Li Y M, Yin S X. 2012. Succession of denitrifying community composition in coastal wetland soils along a salinity gradient. Pedosphere, 22 (3): 367–374.Google Scholar
  45. Posada D, Crandall K A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics, 14 (9): 817–818, https://doi.org/10.1093/bioinformatics/14.9.817.Google Scholar
  46. Qiao S Q, Shi X F, Wang G Q, Zhou L, Hu B Q, Hu L M, Yang G, Liu Y G, Yao Z Q, Liu S F. 2017. Sediment accumulation and budget in the Bohai Sea, Yellow Sea and East China Sea. Marine Geology, 390: 270–281, https://doi. org/10.1016/j.margeo.2017.06.004.Google Scholar
  47. Redfield A C. 1958. The biological control of chemical factors in the environment. American Scientist, 46 (3): 205–221.Google Scholar
  48. Rink B, Seeberger S, Martens T, Duerselen C D, Simon M, Brinkhoff T. 2007. Effects of phytoplankton bloom in a coastal ecosystem on the composition of bacterial communities. Aquatic Microbial Ecology, 48 (1): 47–60, https://doi.org/10.3354/ame048047.Google Scholar
  49. Scala D J, Kerkhof L J. 1998. Nitrous oxide reductase (nosZ) gene–specific PCR primers for detection of denitrifiers and three nosZ genes from marine sediments. FEMS Microbiology Letters, 162 (1): 61–68.Google Scholar
  50. Scala D J, Kerkhof L J. 1999. Diversity of nitrous oxide reductase (nosZ) genes in continental shelf sediments. Applied and Environmental Microbiology, 65 (4): 1 681–1 687.Google Scholar
  51. Scala D J, Kerkhof L J. 2000. Horizontal heterogeneity of denitrifying bacterial communities in marine sediments by terminal restriction fragment length polymorphism analysis. Applied and Environmental Microbiology, 66 (5): 1 980–1 986, https://doi.org/10.1128/aem.66.5. 1980–1986.2000.Google Scholar
  52. Schloss P D, Handelsman J. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Applied and Environmental Microbiology, 71 (3): 1 501–1 506, https://doi.org/10.1128/aem.71.3.1501–1506.2005.Google Scholar
  53. Schmid M C, Risgaard–Petersen N, Van De Vossenberg J, Kuypers M M M, Lavik G, Petersen J, Hulth S, Thamdrup B, Canfield D, Dalsgaard T, Rysgaard S, Sejr M K, Strous M, Den Camp H J M O, Jetten M S M. 2007. Anaerobic ammonium–oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environmental Microbiology, 9 (6): 1 476–1 484, https://doi.org/10.1111/j.1462–2920.2007.01266.x.Google Scholar
  54. Schmid M, Walsh K, Webb R, Rijpstra W I, Van De Pas–Schoonen K, Verbruggen M J, Hill T, Moffett B, Fuerst J, Schouten S, Sinninghe Damsté J S, Harris J, Shaw P, Jetten M, Strous M. 2003. Candidatus “Scalindua brodae”, sp. nov., Candidatus “Scalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Systematic and Applied Microbiology, 26 (4): 529–538, https://doi.org/10.1078/072320203770865837.Google Scholar
  55. Shao M F, Zhang T, Fang H H P. 2010. Sulfur–driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Applied Microbiology and Biotechnology, 88 (5): 1 027–1 042, https://doi.org/10. 1007/s00253–010–2847–1.Google Scholar
  56. Shehzad A, Liu J W, Yu M, Qismat S, Liu J L, Zhang X H. 2016. Diversity, community composition and abundance of anammox bacteria in sediments of the north marginal seas of China. Microbes and Environment s, 31 (2): 111–120, https://doi.org/10.1264/jsme2.ME15140.Google Scholar
  57. SOA (State Oceanic Administration People’s Republic of China). 2016. Chinese Marine Environment Quality Bulletin, 2015. http://www.nmdis.org.cn/gongbao/huanjing/201604/t20160414_33875.html. (in Chinese)Google Scholar
  58. Sonthiphand P, Hall M W, Neufeld J D. 2014. Biogeography of anaerobic ammonia–oxidizing (anammox) bacteria. Frontiers in Microbiology, 5: 399, https://doi.org/10.3389/fmicb.2014.00399.Google Scholar
  59. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post–analysis of large phylogenies. Bioinformatics, 30 (9): 1 312–1 313, https://doi. org/10.1093/bioinformatics/btu033.Google Scholar
  60. Throbäck I N, Enwall K, Jarvis Å, Hallin S. 2004. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiology Ecology, 49 (3): 401–417, https://doi. org/10.1016/j.femsec.2004.04.011.Google Scholar
  61. Van De Vossenberg J, Woebken D, Maalcke W J, Wessels H J C T, Dutilh B E, Kartal B, Janssen–Megens E M, Roeselers G, Yan J, Speth D, Gloerich J, Geerts W, Van Der Biezen E, Pluk W, Francoijs K J, Russ L, Lam P, Malfatti S A, Tringe S G, Haaijer S C M, Op Den Camp H J M, Stunnenberg H G, Amann R, Kuypers M M M, Jetten M S M. 2013. The metagenome of the marine anammox bacterium ‘Candidatus Scalindua profunda’ illustrates the versatility of this globally important nitrogen cycle bacterium. Environmental Microbiology, 15 (5): 1 275–1 289, https://doi.org/10.1111/j.1462–2920.2012.02774.x.Google Scholar
  62. Wang H T, Su J Q, Zheng T L, Yang X R. 2014. Impacts of vegetation, tidal process, and depth on the activities, abundances, and community compositions of denitrifiers in mangrove sediment. Applied Microbiology and Biotechnology, 98 (22): 9 375–9 387, https://doi.org/10. 1007/s00253–014–6017–8.Google Scholar
  63. Wang X L, Cui Z G, Guo Q, Han X R, Wang J T. 2009. Distribution of nutrients and eutrophication assessment in the Bohai Sea of China. Chinese Journal of Oceanology and Limnology, 27 (1): 177–183, https://doi.org/10.1007/s00343–009–0177–x.Google Scholar
  64. Ward B B. 2013. How nitrogen is lost. Science, 341 (6144): 352–353, https://doi.org/10.1126/science.1240314.Google Scholar
  65. Wei H, Sun J, Moll A, Zhao L. 2004. Phytoplankton dynamics in the Bohai Sea—observations and modelling. Journal of Marine Systems, 44 (3–4): 233–251, https://doi.org/10.1016/j.jmarsys.2003.09.012.Google Scholar
  66. Wei H, Tian T, Zhou F, Zhao L. 2002. Numerical study on the water exchange of the Bohai Sea: simulation of the halflife time by dispersion model. Journal of Ocean University of Qingdao, 32 (4): 519–525. (in Chinese with English abstract)Google Scholar
  67. Woebken D, Lam P, Kuypers M M M, Naqvi S W A, Kartal B, Strous M, Jetten M S M, Fuchs B M, Amann R. 2008. A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environmental Microbiology, 10 (11): 3 106–3 119, https://doi.org/10.1111/j.1462–2920.2008. 01640.x.Google Scholar
  68. Wyman M, Hodgson S, Bird C. 2013. Denitrifying Alphaproteobacteria from the Arabian Sea that express nosZ, the gene encoding nitrous oxide reductase, in oxic and suboxic waters. Applied and Environmental Microbiology, 79 (8): 2 670–2 681, https://doi.org/10.1128/aem.03705–12.Google Scholar
  69. Xu L L, Wu D X, Lin X P, Ma C. 2009. The study of the Yellow Sea Warm Current and its seasonal variability. Journal of Hydrodynamics, 21 (2): 159–165, https://doi.org/10.1016/S1001–6058(08)60133–X.Google Scholar
  70. Yang A J, Zhang X L, Agogué H, Dupuy C, Gong J. 2015. Contrasting spatiotemporal patterns and environmental drivers of diversity and community structure of ammonia oxidizers, denitrifiers, and anammox bacteria in sediments of estuarine tidal flats. Annals of Microbiology, 65 (2): 879–890, https://doi.org/10.1007/s13213–014–0929–5.Google Scholar
  71. Yu T T, Li M, Niu M Y, Fan X B, Liang W Y, Wang F P. 2018. Difference of nitrogen–cycling microbes between shallow bay and deep–sea sediments in the South China Sea. Applied Microbiology and Biotechnology, 102 (1): 447–459, https://doi.org/10.1007/s00253–017–8594–9.Google Scholar
  72. Zhang X L, Agogué H, Dupuy C, Gong J. 2014. Relative abundance of ammonia oxidizers, denitrifiers, and anammox bacteria in sediments of hyper–nutrified estuarine tidal flats and in relation to environmental conditions. Clean–Soil Air Water, 42 (6): 815–823, https://doi.org/10.1002/clen.201300013.Google Scholar
  73. Zhang X L, Zhang Q Q, Yang A J, Hou L J, Zheng Y L, Zhai W D, Gong J. 2018. Incorporation of microbial functional traits in biogeochemistry models provides better estimations of benthic denitrification and anammox rates in coastal oceans. Journal of Geophysical Research: Biogeosciences, 123 (10): 3 331–3 352, https://doi.org/10.1029/2018JG004682.Google Scholar
  74. Zumft W G. 1997. Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews, 61 (4): 533–616.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Environmental Sciences and EngineeringYangzhou UniversityYangzhouChina
  2. 2.Key Laboratory of Coastal Environmental Processes and Ecological Remendation, Yantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantaiChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Shenzhen Lightsun Technology Co. Ltd.ShenzhenChina
  5. 5.Department of Bioengineering, School of Marine Science and TechnologyHarbin Institute of TechnologyWeihaiChina

Personalised recommendations