Advertisement

Antiproliferative and apoptosis-inducing potential of 3β-hydroxy-Δ5-steroidal congeners purifi ed from the soft coral Dendronephthya putteri

  • Thilina U. Jayawardena
  • Won Woo Lee
  • I. P. Shanura Fernando
  • K. K. Asanka Sanjeewa
  • Lei Wang
  • Tee Gee Lee
  • Young Jin Park
  • Chang-Ik Ko
  • You-Jin JeonEmail author
Article
  • 1 Downloads

Abstract

The exploration and identifi cation of antiproliferative phytochemicals have received increased attention in medicinal chemistry. In particular, research focused on the toxicology of marine natural products has increased in recent years. Terpenoids, among many secondary metabolites, have been demonstrated to act as eff ective anticancer agents. Soft corals, a group of marine invertebrates, produce a variety of terpenoids with biofunctional properties. The current study presents the extraction, purifi cation, and identifi cation of sterol congeners from the soft coral Dendronephthya putteri. The method involves 50% chloroform-methanol extraction, polar column fractionation, and analysis through GC-MS n. Dose-dependent antiproliferative activity was observed within the sterol-rich fraction (DPCMH 2-4), which consisted of 3β-hydroxy-Δ5-steroidal congeners. This fraction inhibited the growth of HL-60 and MCF-7 cells with IC 50 values of 25.27±1.43 and 22.81±0.15 μg/mL, respectively. Apoptotic body formation, DNA damage, cell cycle arrest, and apoptotic cell signaling pathway activation were also observed, reinforcing the dosedependent antiproliferative and apoptosis-inducing activity of 3β-hydroxy-Δ5-steroidal congeners. To our knowledge, this is the fi rst report of anticancer agent idwl D. putteri. Based on the observations, these steroidal congeners are promising candidates for the development of anticancer drugs.

Key word

Dendronephthya putteri soft coral antiproliferative agent HL-60 MCF-7 apoptosis steroidal congeners 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowden B F, Alino P M, Coll J C. 1992. Soft corals and their toxins. In: Watters D, Lavin M, MaguireD, Pearn J eds. Toxins and Targets. Effects of natural and synthetic poisons on living cells and fragile ecosystems. Harwood Academic Publ., Philadelphia. p.55–64.Google Scholar
  2. Bremer E, Helfrich W. 2011. Apoptosis Induction for Cancer Therapy. In: Schwab M. ed. Encyclopedia of Cancer. Springer, Berlin, Heidelberg. p.242–244, https://doi.org/10.1007/978–3–642–16483–5_363.Google Scholar
  3. Byju K, Anuradha V, Vasundhara G, Nair S M, Kumar N C. 2014. In vitro and in silico studies on the anticancer and apoptosis–inducing activities of the sterols identified from the soft coral, Subergorgia reticulata. Pharmacognosy Magazine, 10 (S1): S65–S71.Google Scholar
  4. Doetsch M, Gluch A, Poznanović G, Bode J, Vidaković M. 2012. YY1–binding sites provide central switch functions in the PARP–1 gene expression network. PLoS One, 7 (8): e44125, https://doi.org/10.1371/journal.pone.0044125.CrossRefGoogle Scholar
  5. Duh C Y, El–Gamal A A H, Song P Y, Wang S K, Dai C F. 2004. Steroids and sesquiterpenoids from the soft corals Dendronephthya gigantea and Lemnalia cervicorni. Journal of Natural Products, 67 (10): 1 650–1 653, https://doi.org/10.1021/np030550l.CrossRefGoogle Scholar
  6. Fernando I P S, Kim H S, Sanjeewa K K A, Oh J Y, Jeon Y J, Lee W W. 2017a. Inhibition of inflammatory responses elicited by urban fine dust particles in keratinocytes and macrophages by diphlorethohydroxycarmalol isolated from a brown alga Ishige okamurae. Algae, 32 (3): 261–273, https://doi.org/10.4490/algae.2017.32.8.14.CrossRefGoogle Scholar
  7. Fernando I P S, Sanjeewa K K A, Kim H S, Kim S Y, Lee S H, Lee W W, Jeon Y J. 2017c. Identification of sterols from the soft coral Dendronephthya gigantea and their antiinflammatory potential. Environmental Toxicology and Pharmacology, 55: 37–43, https://doi.org/10.1016/j.etap. 2017.08.003.CrossRefGoogle Scholar
  8. Fernando I P S, Sanjeewa KK A, Kim H S, Wang L, Lee W W, Jeon Y J. 2017b. Apoptotic and antiproliferative properties of 3β–hydroxy–Δ5–steroidal congeners from a partially purified column fraction of Dendronephthya gigantea against HL–60 and MCF–7 cancer cells. Journal of Applied Toxicology, 38 (4): 527–536, https://doi.org/10. 1002/jat.3559.CrossRefGoogle Scholar
  9. Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N. 2014. Apoptosis and molecular targeting therapy in cancer. BioMed Research International, 2014: 150 845, https://doi.org/10.1155/2014/150845.Google Scholar
  10. Huang Z W. 2000. Bcl–2 family proteins as targets for anticancer drug design. Oncogene, 19 (56): 6 627–6 631.CrossRefGoogle Scholar
  11. Jänicke R U. 2009. MCF–7 breast carcinoma cells do not express caspase–3. Breast Cancer Research and Treatment, 117 (1): 219–221, https://doi.org/10.1007/s10549–008–0217–9.CrossRefGoogle Scholar
  12. Kang N, Kim S Y, Rho S, Ko J Y, Jeon Y J. 2017. Anti–fatigue activity of a mixture of seahorse (Hippocampus abdominalis) hydrolysate and red ginseng. Fisheries and Aquatic Sciences, 20: 3, https://doi.org/10.1186/s41240–017–0048–x.CrossRefGoogle Scholar
  13. Mbaveng A T, Hamm R, Kuete V. 2014. Harmful and protective effects of terpenoids from African medicinal plants. In: Kuete V ed. Toxicological Survey of African Medicinal Plants. Elsevier, Amsterdam. p.557–576, https://doi. org/10.1016/B978–0–12–800018–2.00019–4.Google Scholar
  14. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods, 65 (1–2): 55–63, https://doi.org/10.1016/0022–1759(83)90303–4.CrossRefGoogle Scholar
  15. Nicoletti I, Migliorati G, Pagliacci M C, Grignani F, Riccardi C. 1991. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. Journal of Immunological Methods, 139 (2): 271–279, https://doi.org/10.1016/0022–1759(91)90198–O.CrossRefGoogle Scholar
  16. Pawlowski J, Kraft A S. 2000. Bax–induced apoptotic cell death. Proceedings of the National Academy of Sciences of the United States of America, 97 (2): 529–531, https://doi.org/10.1073/pnas.97.2.529.CrossRefGoogle Scholar
  17. Samarakoon K W, Ko J Y, Lee J H, Kwon O N, Kim S W, Jeon Y J. 2014. Apoptotic anticancer activity of a novel fatty alcohol ester isolated from cultured marine diatom, Phaeodactylum tricornutum. Journal of Functional Foods, 6: 231–240, https://doi.org/10.1016/j.jff.2013.10. 011.CrossRefGoogle Scholar
  18. Sanjeewa K K A, Oh J Y, Fernando I P S, Lee W, Kim S Y, Wang L, Jeon Y J. 2016. Anti–proliferative effect of eight ethanolic extracts from soft corals on human leukemia cell line HL–60. Journal of Chitin and Chitosan, 21 (4): 261–266, https://doi.org/10.17642/jcc.21.4.6.CrossRefGoogle Scholar
  19. Sarma N S, Krishna M S, Pasha S G, Rao T S P, Venkateswarlu Y, Parameswaran P. 2009. Marine metabolites: The sterols of soft coral. Chemical Reviews, 109 (6): 2 803–2 828, https://doi.org/10.1021/cr800503e.CrossRefGoogle Scholar
  20. Sharifi S, Barar J, Hejazi M S, Samadi N. 2015. Doxorubicin changes Bax/Bcl–xL ratio, caspase–8 and 9 in breast cancer cells. Advanced Pharmaceutical Bulletin, 5 (3): 351–359, https://doi.org/10.15171/apb.2015.049.CrossRefGoogle Scholar
  21. Siddiqui A A, Iram F, Siddiqui S, Sahu K. 2014. Role of natural products in drug discovery process. International Journal of Drug Development and Research, 6 (2): 172–204.Google Scholar
  22. Wolf D, Rotter V. 1985. Major deletions in the gene encoding the p53 tumor antigen cause lack of p53 expression in HL–60 cells. Proceedings of the National Academy of Sciences of the United States of America, 82 (3): 790–794, https://doi.org/10.1073/pnas.82.3.790.CrossRefGoogle Scholar
  23. Yang J, Qi S H, Zhang S, Li Q X. 2006. Chemical constituents from the South China Sea gorgonian coral Subergorgia reticulata. Journal of Chinese Medicinal Materials, 29 (6): 555–557. (in Chinese with English abstract)Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Thilina U. Jayawardena
    • 1
  • Won Woo Lee
    • 1
  • I. P. Shanura Fernando
    • 1
  • K. K. Asanka Sanjeewa
    • 1
  • Lei Wang
    • 1
  • Tee Gee Lee
    • 2
  • Young Jin Park
    • 3
  • Chang-Ik Ko
    • 4
  • You-Jin Jeon
    • 1
    Email author
  1. 1.Department of Marine Life SciencesJeju National UniversityJejuRepublic of Korea
  2. 2.Department of Hotel Cooking NutritionJeonnam Provincial CollegeJeollanam-doRepublic of Korea
  3. 3.Department of Family Medicine, College of MedicineDong-A UniversityBusanRepublic of Korea
  4. 4.Choung Ryong Fisheries Co. Ltd., 7825, Iljudong-ro, Namwon-eup, Seogwipo-siJeju-doRepublic of Korea

Personalised recommendations