Seasonal response of surface wind to SST perturbation in the Northern Hemisphere

  • Jingjing He
  • Xueshuang HanEmail author
  • Xiaopei Lin


The seasonal response of surface wind speed to sea surface temperature (SST) change in the Northern Hemisphere was investigated using 10 years (2002–2011) high–resolution satellite observations and reanalysis data. The results showed that correlation between surface wind speed perturbations and SST perturbations exhibits remarkable seasonal variation, with more positive correlation is stronger in the cold seasons than in the warm seasons. This seasonality in a positive correlation between SST and surface wind speed is attributable primarily to seasonal changes of oceanic and atmospheric background conditions in frontal regions. The mean SST gradient and the prevailing surface winds are strong in winter and weak in summer. Additionally, the eddy–induced response of surface wind speed is stronger in winter than in summer, although the locations and numbers of mesoscale eddies do not show obvious seasonal features. The response of surface wind speed is apparently due to stability and mixing within the marine atmospheric boundary layer (MABL), modulated by SST perturbations. In the cold seasons, the stronger positive (negative) SST perturbations are easier to increase (decrease) the MABL height and trigger (suppress) momentum vertical mixing, contributing to the positive correlation between SST and surface wind speed. In comparison, SST perturbations are relatively weak in the warm seasons, resulting in a weak response of surface wind speed to SST changes. This result holds for each individual region with energetic eddy activity in the Northern Hemisphere.


seasonality positive correlation sea surface temperature (SST) gradient marine atmospheric boundary layer (MABL) height mesoscale eddy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Liwen Bianji, Edanz Group China (, for editing the English text of a draft of this manuscript.


  1. Chelton D B, Schlax M G, Freilich M H, Milliff R H. 2004. Satellite measurements reveal persistent small–scale features in ocean winds. Science, 303(5660): 978–983.CrossRefGoogle Scholar
  2. Chelton D B, Schlax M G, Samelson R M. 2007. Summertime coupling between sea surface temperature and wind stress in the california current system. J. Phys. Oceanogr., 37(3): 495–517, Scholar
  3. Chelton D B, Xie S P. 2010. Coupled ocean–atmosphere interaction at oceanic mesoscales. Oceanography, 23(4): 52–69.CrossRefGoogle Scholar
  4. Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A, Balsamo G, Bauer P, Bechtold P, Beljaars A C M, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally A P, Monge–Sanz B M, Morcrette J J, Park B K, Peubey C, de Rosnay P, Tavolato C, Thépaut J–N, Vitart F. 2011. The ERA–Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137(656): 553–597.CrossRefGoogle Scholar
  5. Gaube P, Chelton D B, Samelson R M, Schlax M G, O’Neill L W. 2014. Satellite observations of mesoscale eddyinduced Ekman pumping. J. Phys. Oceanogr., 45(1): 104–132, Scholar
  6. Hashizume H, Xie S P, Liu W T, Takeuchi K. 2001. Local and remote atmospheric response to tropical instability waves: a global view from space. J. Geophys. Res., 106 (D10): 10 173–10 185.CrossRefGoogle Scholar
  7. He Z Q, Wu R G. 2013. Seasonality of interannual atmosphereocean interaction in the South China Sea. J. Oceanogr., 69(6): 699–712, Scholar
  8. Kelly K A, Small R J, Samelson R M, Qiu B, Joyce T M, Kwon Y, Cronin M F. 2010. Western boundary currents and frontal air–sea interaction: gulf Stream and Kuroshio Extension. J. Climate, 23(21): 5 644–5 667, Scholar
  9. Kobashi F, Xie S P, Iwasaka N, Sakamoto T T. 2008. Deep atmospheric response to the North Pacific oceanic subtropical front in spring. J. Climate, 21(22): 5 960–5 975, Scholar
  10. Liu J W, Xie S P, Norris J R, Zhang S P. 2014. Low–level cloud response to the Gulf Stream front in winter using CALIPSO. J. Climate, 27(12): 4 421–4 432.CrossRefGoogle Scholar
  11. Liu J W, Zhang S P, Xie S P. 2013. Two types of surface wind response to the East China Sea Kuroshio front. J. Climate, 26(21): 8 616–8 627, Scholar
  12. Liu W T, Xie X S, Niiler P P. 2007. Ocean–atmosphere interaction over Agulhas extension meanders. J. Climate, 20(23): 5 784–5 797.CrossRefGoogle Scholar
  13. Ma J, Xu H M, Dong C M. 2016a. Seasonal variations in atmospheric responses to oceanic eddies in the Kuroshio Extension. Tellus A, 68 (1): 31 563, Scholar
  14. Ma X H, Jing Z, Chang P, Liu X, Montuoro R, Small R J, Bryan F O, Greatbatch R J, Brandt P, Wu D X, Lin X P, Wu L X. 2016b. Weatern boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535(7613): 533–537, Scholar
  15. Minobe S, Kuwano–Yoshida A, Komori N, Xie S P, Small R J. 2008. Influence of the Gulf Stream on the troposphere. Nature, 452(7184): 206–209.CrossRefGoogle Scholar
  16. Minobe S, Miyashita M, Kuwano–Yoshida A, Tokinaga H, Xie S P. 2010. Atmospheric response to the Gulf Stream: seasonal variations. J. Climate, 23(13): 3 699–3 719.CrossRefGoogle Scholar
  17. Nakamura H, Sampe T, Tanimoto Y, Shimpo A. 2004. Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. In: Earth’s Climate: The Ocean–Atmosphere Interaction. AGU, Washington, p.329–345.Google Scholar
  18. O’Neill L W, Chelton D B, Esbensen S K. 2003. Observations of SST–induced perturbations of the wind stress field over the southern ocean on seasonal timescales. J. Climate, 16(14): 2 340–2 354, Scholar
  19. O’Reilly C H, Czaja A. 2015. The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability. Quart. J. Roy. Meteor. Soc., 141(686): 52–66.CrossRefGoogle Scholar
  20. O’Neill L W, Chelton D B, Esbensen S K, Wentz F J. 2005. High–resolution satellite measurements of the atmospheric boundary layer response to SST variations along the agulhas return current. J. Climate, 18(14): 2 706–2 723, Scholar
  21. O’Neill L W, Esbensen S K, Thum N, Samelson R M, Chelton D B. 2010. Dynamical analysis of the boundary layer and surface wind responses to mesoscale SST perturbations. J. Climate, 23(3): 559–581.CrossRefGoogle Scholar
  22. Park S, Deser C, Alexander M A. 2005. Estimation of the surface heat flux response to sea surface temperature anomalies over the global oceans. J. Climate, 18(21): 4 582–4 599, Scholar
  23. Small R J, Bacmeister J, Bailey D, Baker A, Bishop S, Bryan F, Caron J, Dennis J, Gent P, Hsu H M, Jochum M, Lawrence D, Muñoz E, diNezio P, Scheitlin T, Tomas R, Tribbia J, Tseng Y H, Vertenstein M. 2014. A new synoptic scale resolving global climate simulation using the Community Earth System Model. J. Adv. Model. Rarth Syst., 6(4): 1 065–1 094, Scholar
  24. Small R J, deSzoeke S P, Xie S P, O’Neill L, Seo H, Song Q, Cornillon P, Spall M, Minobe S. 2008. Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45 (3–4): 274–319.CrossRefGoogle Scholar
  25. Spall M A. 2007. Effect of sea surface temperature–wind stress coupling on Baroclinic instability in the ocean. J. Phys. Oceanogr., 37(4): 1 092–1 097, Scholar
  26. Taguchi B, Nakamura H, Nonaka M, Xie S P. 2009. Influences of the Kuroshio/Oyashio Extensions on air–sea heat exchanges and storm–track activity as revealed in regional atmospheric model simulations for the 2003/04 cold season. J. Climate, 22(24): 6 536–6 560.CrossRefGoogle Scholar
  27. Tanimoto Y, Nakamura H, Kagimoto T, Yamane S. 2003. An active role of extratropical sea surface temperature anomalies in determining anomalous turbulent heat flux. J. Geophys. Res., 108 (C10): 3 304, Scholar
  28. Tanimoto Y, Xie S P, Kai K, Okajima H, Tokinaga H, Murayama T, Nonaka M, Nakamura H. 2009. Observations of marine atmospheric boundary layer transitions across the summer Kuroshio Extension. J. Climate, 22(6): 1 360–1 374, Scholar
  29. Tokinaga H, Tanimoto Y, Xie S P, Sampe T, Tomita H, Ichikawa H. 2009. Ocean frontal effects on the vertical development of clouds over the western North Pacific: in situ and satellite observations. J. Climate, 22(16): 4 241–4 260.CrossRefGoogle Scholar
  30. Tokinaga H, Tanimoto Y, Xie S P. 2005. SST–induced surface wind variations over the Brazil–Malvinas Confluence: satellite and in situ observations. J. Climate, 18(17): 3 470–3 482, Scholar
  31. Wallace J M, Mitchell T P, Deser C. 1989. The influence of sea–surface temperature on surface wind in the eastern equatorial Pacific: seasonal and interannual variability. J. Climate, 2(12): 1 492–1 499.CrossRefGoogle Scholar
  32. Xie S P. 2004. Satellite observations of cool ocean–atmosphere interaction. Bull. Am. Meteor. Soc., 85(2): 195–208.CrossRefGoogle Scholar
  33. Xu H M, Xu M M, Xie S P, Wang Y Q. 2011. Deep atmospheric response to the spring Kuroshio over the East China Sea. J. Climate, 24(18): 4 959–4 972, Scholar
  34. Xu M M, Xu H M. 2015. Atmospheric responses to Kuroshio SST front in the East China Sea under different prevailing winds in winter and spring. J. Climate, 28(8): 3 191–3 211, Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physical Oceanography Laboratory / CIMSTOcean University of China and Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  2. 2.Research Vessel CenterOcean University of ChinaQingdaoChina

Personalised recommendations