Advertisement

Analysis of novel immune–related genes and microsatellite markers in the transcriptome of Paphia undulata

  • Xiangwei Wu
  • Xiande Liu
  • Ziniu YuEmail author
Article
  • 7 Downloads

Abstract

Increasingly, exogenous stressors such as pathogen infections, variable water conditions, and pollution are resulting in high mortality of Paphia undulata, deleteriously affecting the quality of clam harvests. The foot is a burrowing organ in clams. Physical damage and constant contact with the external environment cause the foot to be highly sensitive to pathogen invasion and water condition variation. In the present study, the foot tissue transcriptome was analyzed to identify genes involved in immune and stress responses. The P. undulata transcriptome included 5 286 668 078 bp reads generated by Illumina Hiseq2000 sequencing and were assembled into 1 785 226 contigs by de novo method. The contigs were clustered into 99 339 transcripts and further grouped into 60 201 unigenes. Of them, 22 260 unigenes were successfully annotated using public databases. Twelve genes that were response to immune and stress were identified with abundant expression levels, including heat shock protein 70, cold shock protein, complement C3, cathepsin L, ubiquitin carboxyl–terminal hydrolase L5, and translationally controlled tumor protein. Furthermore, 566 unigenes were found homologous to genes involved in the immune response systems of pathogen discrimination, signal transduction, and immune effector, such as lectins, toll–like receptors, complement pathway, toll–like receptor signaling pathway, heat shock proteins, antioxidant enzymes, lysozymes, and mucins, indicating that P. undulata could have a complete set of innate immune mechanisms. In addition, 4 270 microsatellite markers (SSRs) were identified from 60 201 unigenes, of which trinucleotide repeats were most abundant and 16 SSRs were tested to be polymorphic. The present study provides a new insight into innate immunity and stress response mechanisms in P. undulata.

Keyword

Paphia undulata foot tissue transcriptome innate immunity unigene microsatellite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

343_2019_8154_MOESM1_ESM.pdf (1.2 mb)
Supplementary material, approximately 1.15 MB.
343_2019_8154_MOESM2_ESM.pdf (3.4 mb)
Supplementary material, approximately 3.38 MB.

References

  1. Aguirre J, Ríos–Momberg M, Hewitt D, Hansberg, W. 2005. Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol., 13(3): 111–118.Google Scholar
  2. Akira S. 2003. Toll–like receptor signaling. J. Biol. Chem., 278(40): 38 105–38 108.Google Scholar
  3. Altschul S F, Madden T L, Schäffer A, Zhang J H, Zhang Z, Miller W, Lipman D J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res., 25(17): 3 389–3 402.Google Scholar
  4. An H S, Lee J W. 2012. Development of microsatellite markers for the Korean mussel, Mytilus coruscus (Mytilidae) using next–generation sequencing. Int. J. Mol. Sci., 13(8): 10 583–10 593.Google Scholar
  5. Bachali S, Jager M, Hassanin A, Schoentgen F, Jollès P, Fiala–Medioni A, Deutsch J S. 2002. Phylogenetic analysis of invertebrate lysozymes and the evolution of lysozyme function. J. Mol. Evol., 54(5): 652–664.Google Scholar
  6. Bahia A C, Kubota M S, Tempone A J, Pinheiro W D, Tadei W P, Secundino N F C, Traub–Csekö Y M, Pimenta P F P. 2010. Anopheles aquasalis infected by Plasmodium vivax displays unique gene expression profiles when compared to other malaria vectors and plasmodia. PLoS One, 5 (3): e9795.Google Scholar
  7. Beaz–Hidalgo R, Balboa S, Romalde J L, Figueras M J. 2010. Diversity and pathogenecity of Vibrio species in cultured bivalve molluscs. Environ. Microbiol. Rep., 2(1): 34–43.Google Scholar
  8. Bettencourt R, Pinheiro M, Egas C, Gomes P, Afonso M, Shank T, Santos R S. 2010. High–throughput sequencing and analysis of the gill tissue transcriptome from the deep–sea hydrothermal vent mussel Bathymodiolus azoricus. BMC Genomics, 11: 559.Google Scholar
  9. Botstein D, White R L, Skolnick M, Davis R W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet., 32(3): 314–331.Google Scholar
  10. Brun N T, Bricelj V M, MacRae T H, Ross N W. 2008. Heat shock protein responses in thermally stressed bay scallops, Argopecten irradians, and sea scallops, Placopecten magellanicus. J. Exp. Mar. Biol. Ecol., 358(2): 151–162.Google Scholar
  11. Carroll M C. 2004. The complement system in regulation of adaptive immunity. Nat. Immunol., 5(10): 981–986.Google Scholar
  12. Chen X M, Li J K, Xiao S J, Liu X D. 2016. De novo assembly and characterization of foot transcriptome and microsatellite marker development for Paphia textile. Gene, 576(1): 537–543.Google Scholar
  13. Clark M S, Thorne M A S, Vieira F A, Cardoso J C R, Power D M, Peck L S. 2010. Insights into shell deposition in the Antarctic bivalve Laternula elliptica: gene discovery in the mantle transcriptome using 454 pyrosequencing. BMC Genomics, 11: 362.Google Scholar
  14. Conesa A, Götz S, García–Gómez J M, Terol J, Talón M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18): 3 674–3 676.Google Scholar
  15. Cronin S J, Nehme N T, Limmer S, Liegeois S, Pospisilik J A, Schramek D, Leibbrandt A, Simoes R D M, Gruber S, Puc U, Ebersberger I, Zoranovic T, Neely G G, von Haeseler A, Ferrandon D, Penninger J M. 2009. Genome–wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science, 325(5938): 340–343.Google Scholar
  16. Delanghe J R, Speeckaert R, Speeckaert M M. 2014. Complement C3 and its polymorphism: biological and clinical consequences. Pathology, 46(1): 1–10.Google Scholar
  17. Deng Y W, Lei Q N, Tian Q L, Xie S H, Du X D, Li J H, Wang L Q, Xiang Y X. 2014. De novo assembly, gene annotation, and simple sequence repeat marker development using Illumina paired–end transcriptome sequences in the pearl oyster Pinctada maxima. Biosci. Biotechnol. Biochem., 78(10): 1 685–1 692.Google Scholar
  18. Dunkelberger J R, Song W C. 2010. Complement and its role in innate and adaptive immune responses. Cell Res., 20(1): 34–50.Google Scholar
  19. Feldmeyer B, Wheat C W, Krezdorn N, Rotter B, Pfenninger M. 2011. Short read Illumina data for the de novo assembly of a non–model snail species transcriptome (Radix balthica, Basommatophora, Pulmonata), and a comparison of assembler performance. BMC Genomics, 12: 317.Google Scholar
  20. Feng B B, Dong L L, Niu D H, Meng S S, Zhang B, Liu D B, Hu S N, Li J L. 2010. Identification of immune genes of the Agamaki clam (Sinonovacula constricta) by sequencing and bioinformatic analysis of ESTs. Mar. Biotechnol., 12(3): 282–291.Google Scholar
  21. Gendler S J, Spicer A P. 1995. Epithelial mucin genes. Annu. Rev. Physiol., 57: 607–634.Google Scholar
  22. Gerdol M, Manfrin C, De Moro G, Figueras A, Novoa B, Venier P, Pallavicini A. 2011. The C1q domain containing proteins of the Mediterranean mussel Mytilus galloprovincialis: a widespread and diverse family of immune–related molecules. Dev. Comp. Immunol., 35(6): 635–643.Google Scholar
  23. Gourdine J P, Smith–Ravin E J. 2007. Analysis of a cDNAderived sequence of a novel mannose–binding lectin, codakine, from the tropical clam Codakia orbicularis. Fish Shellfish Immunol., 22(5): 498–509.Google Scholar
  24. Grieshaber M K, Hardewig I, Kreutzer U, Pörlner H O. 1994. Physiological and metabolic responses to hypoxia in invertebrates. In: Reviews of Physiology, Biochemistry and Pharmacology. Springer, Berlin, Heidelberg. p.43–147.Google Scholar
  25. Gueguen Y, Cadoret J P, Flament D, Barreau–Roumiguière C, Girardot A L, Garnier J, Hoareau A, Bachère E, Escoubas J M. 2003. Immune gene discovery by expressed sequence tags generated from hemocytes of the bacteria–challenged oyster, Crassostrea gigas. Gene, 303: 139–145.Google Scholar
  26. Haas B J, Papanicolaou A, Yassour M, Grabherr M, Blood P D, Bowden J, Couger M B, Eccles D, Li B, Lieber M, MacManes M D, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey C N, Henschel R, LeDuc R D, Friedman N, Regev A. 2013. De novo transcript sequence reconstruction from RNA–seq using the Trinity platform for reference generation and analysis. Nat. Protoc., 8(8): 1 494–1 512.Google Scholar
  27. Huan P, Wang H X, Liu B Z. 2012. Transcrip tomic analysis of the clam Meretrix meretrix on different larval stages. Mar. Biotechnol., 14(1): 69–78.Google Scholar
  28. Iwanaga S, Lee B L. 2005. Recent advances in the innate immunity of invertebrate animals. J. Biochem. Mol. Boil., 38(2): 128–150.Google Scholar
  29. Iwasaki A, Medzhitov R. 2004. Toll–like receptor control of the adaptive immune responses. Nat. Immunol., 5(10): 987–995.Google Scholar
  30. Janeway C A Jr, Medzhitov R. 2002. Innate immune recognition. Annu. Rev. Immunol., 20: 197–216.Google Scholar
  31. Jensen K T, Castro N F, Bachelet G. 1999. Infectivity of Himasthla spp. (Trematoda) in cockle (Cerastoderma edule) spat. J. Mar. Biol. Assoc. UK, 79(2): 265–271.Google Scholar
  32. Jeong E, Lee J Y. 2011. Intrinsic and extrinsic regulation of innate immune receptors. Yonsei Med. J., 52(3): 379–392.Google Scholar
  33. Jiang WN, Hon Y, Inouye M. 1997. CspA, the major coldshock protein of Escherichia coli, is an RNA chaperone. J. Biol. Chem., 272(1): 196–202.Google Scholar
  34. Kim J Y, Adhya M, Cho S K, Choi K S, Cho M. 2008. Characterization, tissue expression, and immunohistochemical localization of MCL3, a C–type lectin produced by Perkinsus olseni–infected Manila clams (Ruditapes philippinarum). Fish Shellfish Immunol., 25(5): 598–603.Google Scholar
  35. Lauckner G. 1983. Diseases of Mollusca: Bivalvia. In: Kinne O ed. Diseases of Marine Animals. Biologische Anstalt Helgoland, Hamburg, Germany. p.477–961.Google Scholar
  36. Leethochavalit S, Chalermwat K, Upatham E S, Choi K S, Sawangwong P, Kruatrachue M. 2004. Occurrence of Perkinsus sp. in undulated surf clams Paphia undulata from the Gulf of Thailand. Dis. Aquat. Org. 60(2): 165–171.Google Scholar
  37. Li H J, Liu W D, Gao X G, Zhu D, Wang J, Li Y F, He C B. 2011. Identification of host–defense genes and development of microsatellite markers from ESTs of hard clam Meretrix meretrix. Mol. Biol. Rep., 38(2): 769–775.Google Scholar
  38. Loker E S, Adema C M, Zhang S M, Kepler T B. 2004. Invertebrate immune systems–not homogeneous, not simple, not well understood. Immunol. Rev., 198(1): 10–24.Google Scholar
  39. Matsubara H, Ogawa T, Muramoto K. 2006. Structures and functions of C–type lectins in marine invertebrates. Tohoku J. Agric. Res., 57 (1–2): 71–86.Google Scholar
  40. Moreira R, Balseiro P, Planas J V, Fuste B, Beltran S, Novoa B, Figueras A. 2012. Transcriptomics of in vitro immunestimulated hemocytes from the Manila clam Ruditapes philippinarum using high–throughput sequencing. PLoS One, 7 (4): e35009.Google Scholar
  41. Mouritsen K N, Poulin R. 2003. The risk of being at the top: foot–cropping in the New Zealand cockle Austrovenus stutchburyi. J. Mar. Biol. Assoc. UK, 83(3): 497–498.Google Scholar
  42. Niu D H, Jin K, Wang L, Feng B B, Li J L. 2013b. Molecular characterization and expression analysis of four cathepsin L genes in the razor clam, Sinonovacula constricta. Fish Shellfish Immunol., 35(2): 581–588.Google Scholar
  43. Niu D H, Wang L, Sun F Y, Liu Z J, Li J L. 2013a. Development of molecular resources for an intertidal clam, Sinonovacula constricta. using 454 transcriptome sequencing. PLoS One, 8 (7): e67456.Google Scholar
  44. O’Connell–Milne S, Poulin R, Savage C, Rayment W. 2016. Reduced growth, body condition and foot length of the bivalve Austrovenus stutchburyiq in response to parasite infection. J. Exp. Mar. Biol. Ecol., 474: 23–28.Google Scholar
  45. Pallavicini A, del Mar Costa M, Gestal C, Dreos R, Figueras A, Venier P, Novoa B. 2008. High sequence variability of myticin transcripts in hemocytes of immune–stimulated mussels suggests ancient host–pathogen interactions. Dev. Comp. Immunol., 32(3): 213–226.Google Scholar
  46. Parcellier A, Gurbuxani S, Schmitt E, Solary E, Garrido C. 2003. Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem. Biophys. Res. Commun., 304(3): 505–512.Google Scholar
  47. Paul–Pont I, de Montaudouin X, Gonzalez P, Soudant P, Baudrimont M. 2010. How life history contributes to stress response in the Manila clam Ruditapes philippinarum. Environ. Sci. Pollut. Res., 17(4): 987–998.Google Scholar
  48. Peng M X, Niu D H, Wang F, Chen Z Y, Li J L. 2016. Complement C3 gene: Expression characterization and innate immune response in razor clam Sinonovacula constricta. Fish Shellfish Immunol., 55: 223–232.Google Scholar
  49. Philipp E, Pörtner HO, Abele D. 2005. Mitochondrial ageing of a polar and a temperate mud clam. Mech. Ageing Dev., 126(5): 610–619.Google Scholar
  50. Ruddell R G, Hoang–Le D, Barwood J M, Rutherford P S, Piva T J, Watters D J, Santambrogio P, Arosio P, Ramm G A. 2009. Ferritin functions as a proinflammatory cytokine via iron–independent protein kinase C zeta/nuclear factor kappaB–regulated signaling in rat hepatic stellate cells. Hepatology, 49(3): 887–900.Google Scholar
  51. Sambrook J, Fritsch E F, Maniatis J. 1989. Molecular Cloning: A Laboratory Manual. 2 nd edn. Cold Spring Harbor Laboratory Press, New York. 1625p.Google Scholar
  52. Shi M J, Lin Y, Xu G R, Xie L P, Hu X L, Bao Z M, Zhang R Q. 2013. Characterization of the Zhikong scallop (Chlamys farreri) mantle transcriptome and identification of biomineralization–related genes. Mar. Biotechnol., 15(6): 706–715.Google Scholar
  53. Song L S, Wang L L, Qiu L M, Zhang H A. 2011. Bivalve immunity. In: Söderhäll K ed. Invertebrate Immunity. Springer, Boston, MA. p.44–65.Google Scholar
  54. Song X Y, Zhang H, Zhao J M, Wang L L, Qiu L M, Mu C K, Liu X L, Qiu L H, Song L S. 2010. An immune responsive multidomain galectin from bay scallop Argopectens irradians. Fish Shellfish Immunol., 28(2): 326–332.Google Scholar
  55. Takeda K, Akira S. 2005. Toll–like receptors in innate immunity. Int. Immunol., 17(1): 1–14.Google Scholar
  56. Tatusov R L, Galperin M Y, Natale D A, Koonin E V. 2000. The COG database: a tool for genome–scale analysis of protein functions and evolution. Nucleic Acids Res., 28(1): 33–36.Google Scholar
  57. Thieringer H A, Jones P G, Inouye M. 1998. Cold shock and adaptation. Bioessays, 20(1): 49–57.Google Scholar
  58. Thomas F, Renaud F, de Meeûs T, Poulin R. 1998. Manipulation of host behaviour by parasites: ecosystem engineering in the intertidal zone? Proc. Roy. Soc. B: Biol. Sci., 265(1401): 1 091–1 096.Google Scholar
  59. Underhill D M, Ozinsky A. 2002. Toll–like receptors: key mediators of microbe detection. Curr. Opin. Immunol., 14(1): 103–110.Google Scholar
  60. van de Wetering J K, van Golde L M G, Batenburg J J. 2004. Collectins: players of the innate immune system. FEBS J., 271(7): 1 229–1 249.Google Scholar
  61. Venier P, Varotto L, Rosani U, Millino C, Celegato B, Bernante F, Lanfranchi G, Novoa B, Roch P, Figueras A, Pallavicini A. 2011. Insights into the innate immunity of the Mediterranean mussel Mytilus galloprovincialis. BMC Genomics, 12: 69.Google Scholar
  62. Wang A M, Wang Y, Gu Z F, Li S F, Shi Y H, Guo X M. 2011. Development of expressed Sequence tags from the pearl oyster, Pinctada martensii Dunker. Mar. Biotechnol., 13(2): 275–283.Google Scholar
  63. Wang L L, Qiu L M, Zhou Z, Song L S. 2013. Research progress on the mollusc immunity in China. Dev. Comp. Immunol., 39 (1–2): 2–10.Google Scholar
  64. Wang L L, Song L S, Zhao J M, Qiu L M, Zhang H, Xu W, Li H L, Li C H, Wu L T, Guo X M. 2009. Expressed sequence tags from the Zhikong scallop (Chlamys farreri): discovery and annotation of hostdefense genes. Fish Shellfish Immunol., 26(5): 744–750.Google Scholar
  65. Weber M H W, Fricke I, Doll N, Marahiel M A. 2002. CSDBase: an interactive database for cold shock domaincontaining proteins and the bacterial cold shock response. Nucleic Acids Res., 30(1): 375–378.Google Scholar
  66. Wu X W, Tan J, Cai M Y, Liu X D. 2014. Molecular cloning, characterization, and expression analysis of a heat shock protein (HSP) 70 gene from Paphia undulata. Gene, 543(2): 275–285.Google Scholar
  67. Yang C Y, Wang L L, Siva V S, Shi X W, Jiang Q F, Wang J J, Zhang H, Song L S. 2012. A novel cold–regulated cold shock domain containing protein from scallop Chlamys farreri with nucleic acid–binding activity. PLoS One, 7 (2): e32012.Google Scholar
  68. Yeh F C, Yang R, Boyle T J, Ye Z, Xiyan J M. 2000. PopGene32, Microsoft Windows–based freeware for population genetic analysis, version 1.32. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, Alberta, Canada.Google Scholar
  69. Yeh H Y, Klesius P H. 2010. Characterization and tissue expression of channel catfish (Ictalurus punctatus Rafinesque, 1818) ubiquitin carboxyl–terminal hydrolase L5 (UCHL5) cDNA. Mol. Biol. Rep., 37(3): 1 229–1 234.Google Scholar
  70. Zhang H, Song L S, Li C H, Zhao J M, Wang H, Qiu L M, Ni D J, Zhang Y. 2008. A novel C1q–domain–containing protein from Zhikong scallop Chlamys farreri with lipopolysaccharide binding activity. Fish Shellfish Immunol., 25(3): 281–289.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology,Chinese Academy of SciencesGuangzhouChina
  2. 2.Animal Science and Technology CollegeYunnan Agricultural UniversityKunmingChina
  3. 3.Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture of China; Fisheries CollegeJimei UniversityXiamenChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations