Advertisement

Culture of yeast cells immobilized by alginate-chitosan microcapsules in aqueous-organic solvent biphasic system

  • Dandan Hou
  • Weiting YuEmail author
  • Demeng Zhang
  • Lili Zhao
  • Xiudong LiuEmail author
  • Xiaojun Ma
Article
  • 4 Downloads

Abstract

Immobilization biocatalysis is a potential technology to improve the activity and stability of biocatalysts in nonaqueous systems for efficient industrial production. Alginate-chitosan (AC) microcapsules were prepared as immobilization carriers by emulsification-internal gelation and complexation reaction, and their contribution on facilitating the growth and metabolism of yeast cells were testified successfully in culture medium-solvent biphasic systems. The cell growth in AC microcapsules is superior to that in alginate beads, and the cells in both immobilization carriers maintain much higher activity than free cells, which demonstrates AC microcapsules can confer yeast cells the ability to resist the adverse effect of solvent. Moreover, the performance of AC microcapsules in biphasic systems could be improved by adjusting the formation of outer polyelectrolyte complex (PEC) membrane to promote the cell growth and metabolic ability under the balance of resisting solvent toxicity and permitting substrate diff usion. Therefore, these findings are quite valuable for applying AC microcapsules as novel immobilization carriers to realize the biotransformation of value-added products in aqueous-solvent biphasic systems.

Keyword

alginate-chitosan (AC) microcapsules immobilization biocatalysis aqueous-solvent biphasic system cell growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

We thank Dr. Xin Xiong (Natural and Medical Sciences Institute at University of Tübingen, Markwiesenstr. 55, 72770 Reutlingen, Germany), and Prof. Dr. Rumen Krastev (University Reutlingen, Alteburgstr. 150, 72762 Reutlingen, Germany) for the constructive discussion and communication about biocatalysis-related issues.

References

  1. Arabi H, Yazdi M T, Faramarzi M A. 2010. Influence of whole microalgal cell immobilization and organic solvent on the bioconversion of androst–4–en–3, 17–dione to testosterone by Nostoc muscorum. Journal of Molecular Catalysis B: Enzymatic, 62(3–4): 213–217.CrossRefGoogle Scholar
  2. Bezerra C S, De Farias Lemos C M G, De Sousa M, Gonçalves L R B. 2015. Enzyme immobilization onto renewable polymeric matrixes: past, present, and future trends. Journal of Applied Polymer Science, 132(26): 42 125.CrossRefGoogle Scholar
  3. Bommarius A S, Paye M F. 2013. Stabilizing biocatalysts. Chemical Society Reviews, 42(15): 6 534–6 565.CrossRefGoogle Scholar
  4. Börner R A, Aliaga M T A, Mattiasson B. 2013. Microcultivation of anaerobic bacteria single cells entrapped in alginate microbeads. Biotechnology Letters, 35(3): 397–405.CrossRefGoogle Scholar
  5. Bornscheuer U T, Huisman G W, Kazlauskas R J, Lutz S, Moore J C, Robins K. 2012. Engineering the third wave of biocatalysis. Nature, 485(7397): 185–194.CrossRefGoogle Scholar
  6. Cirino P C, Sun L H. 2008. Advancing biocatalysis through enzyme, cellular, and platform engineering. Biotechnology Progress, 24(3): 515–519.CrossRefGoogle Scholar
  7. Cui J H, Cao Q R, Choi Y J, Lee K H, Lee B J. 2006. Effect of additives on the viability of bifidobacteria loaded in alginate poly–l–lysine microparticles during the freeze–drying process. Archives of Pharmacal Research, 29(8): 707–711.CrossRefGoogle Scholar
  8. De Carvalho C C C R. 2011. Enzymatic and whole cell catalysis: Finding new strategies for old processes. Biotechnology Advances, 29(1): 75–83.CrossRefGoogle Scholar
  9. Dennewald D, Hortsch R, Weuster–Botz D. 2012. Evaluation of parallel milliliter–scale stirred–tank bioreactors for the study of biphasic whole–cell biocatalysis with ionic liquids. Journal of Biotechnology, 157(1): 253–257.CrossRefGoogle Scholar
  10. Eş I, Vieira J D G, Amaral A C. 2015. Principles, techniques, and applications of biocatalyst immobilization for industrial application. Applied Microbiology and Biotechnology, 99(5): 2 065–2 082.CrossRefGoogle Scholar
  11. Gao M, Song H Y, Zheng H Z, Ren Y, Li S, Liu X D, Yu W T, Ma X J. 2016. Culture of low density E. coli cells in alginate–chitosan microcapsules facilitates stress resistance by up–regulating luxS /AI–2 system. Carbohydrate Polymers, 141: 160–165.CrossRefGoogle Scholar
  12. Garikipati S V B J, McIver A M, Peeples T L. 2009. Whole–cell biocatalysis for 1–naphthol production in liquid–liquid biphasic systems. Applied and Environmental Microbiology, 75(20): 6 545–6 452.CrossRefGoogle Scholar
  13. Gaumann A, Laudes M, Jacob B, Pommersheim R, Laue C, Vogt W, Schrezenmeir J. 2000. Effect of media composition on long–term in vitro stability of barium alginate and polyacrylic acid multilayer microcapsules. Biomaterials, 21(18): 1 911–1 917.CrossRefGoogle Scholar
  14. Goranov B, Blaziiva D, Kostov G, Denkova Z, Germanova Y. 2013. Lactic acid fermentation with encapsulated Lactobacillus Casei ssp. Rhamnosus ATCC11979(NBIMCC1013) in alginate–chitosan matrices. Bulg. J. Agric. Sci., 19(2): 101–104, https://www.researchgate.net/publication/258047099_Lactic_acid_fermentation_with_encapsulated_Lactobacillus_casei_SSP_rhamnosus_ATCC_11979_NBIMCC_1013_in_alginate_chitosan_matrices.Google Scholar
  15. Hou D D, Li H J, Song H Y, Dai X M, Yu W T, Liu X D, Ma X J. 2012. Size and strength of alginate–chitosan microcapsules in nonaqueous system. CIESC Journal, 63(5): 1 522–1 528.(in Chinese with English abstract)Google Scholar
  16. Kansal H, Banerjee U C. 2009. Enhancing the biocatalytic potential of carbonyl reductase of Candida viswanathii using aqueous–organic solvent system. Bioresource Technology, 100(3): 1 041–1 047.CrossRefGoogle Scholar
  17. Kisukuri C M, Andrade L H. 2015. Production of chiral compounds using immobilized cells as a source of biocatalysts. Organic & Biomolecular Chemistry, 13(40): 10 086–10 107.CrossRefGoogle Scholar
  18. Liouni M, Drichoutis P, Nerantzis E T. 2008. Studies of the mechanical properties and the fermentation behavior of double layer alginate–chitosan beads, using Saccharomyces cerevisiae entrapped cell. World Journal of Microbiology and Biotechnology, 24(2): 281–288.CrossRefGoogle Scholar
  19. Marques M P C, De Carvalho C C C R, Cabral J M S, Fernandes P. 2010. Scaling–up of complex whole–cell bioconversions in conventional and non–conventional media. Biotechnology and Bioengineering, 106(4): 619–626.CrossRefGoogle Scholar
  20. Naydenova V, Badova M, Vassilev S, Iliev V, Kaneva M, Kostov G. 2014. Encapsulation of brewing yeast in alginate/chitosan matrix lab–scale optimization of lager beer fermentation. Biotechnology & Biotechnological Equipment, 28(2): 277–284.CrossRefGoogle Scholar
  21. Rathore S, Desai P M, Liew C V, Chan L W, Heng P W S. 2013. Microencapsulation of microbial cells. Journal of Food Engineering, 116(2): 369–381.CrossRefGoogle Scholar
  22. Ratnayake N D, Theisen C, Walter T, Walker K D. 2016. Whole–cell biocatalytic production of variously substituted β–aryl–and β–heteroaryl–β–amino acids. Journal of Biotechnology, 217: 12–21.CrossRefGoogle Scholar
  23. Reetz M T. 2013. Biocatalysis in organic chemistry and biotechnology: Past, present, and future. Journal of the American Chemical Society, 135(34): 12 480–12 496.CrossRefGoogle Scholar
  24. Rivero C W, De Benedetti E C, Lozano M E, Trelles J A. 2015. Bioproduction of ribavirin by green microbial biotransformation. Process Biochemistry, 50(6): 935–940.CrossRefGoogle Scholar
  25. Schrewe M, Julsing M K, Bühler B, Schmid A. 2013. Wholecell biocatalysis for selective and productive C–O functional group introduction and modification. Chemical Society Reviews, 42(15): 6 346–6 377.CrossRefGoogle Scholar
  26. Shih I L, Chen L D, Wu J Y. 2010. Levan production using Bacillus subtilis natto cells immobilized on alginate. Carbohydrate Polymers, 82(1): 111–117.CrossRefGoogle Scholar
  27. Song H Y, Yu W T, Gao M, Liu X D, Ma X J. 2013. Microencapsulated probiotics using emulsification technique coupled with internal or external gelation process. Carbohydrate Polymers, 96(1): 181–189.CrossRefGoogle Scholar
  28. Song H Y, Yu W T, Liu X D, Ma X J. 2014. Improved probiotic viability in stress environments with post–culture of alginate–chitosan microencapsulated low density cells. Carbohydrate Polymers, 108: 10–16.CrossRefGoogle Scholar
  29. Stark D, Münch T, Sonnleitner B, Marison I W, Von Stockar U. 2002. Extractive bioconversion of 2–phenylethanol from l–phenylalanine by Saccharomyces cerevisiae. Biotechnology Progress, 18(3): 514–523.CrossRefGoogle Scholar
  30. Wang W, Liu X D, Xie Y B, Zhang H A, Yu W T, Xiong Y, Xie W Y, Ma X J. 2006. Microencapsulation using natural polysaccharides for drug delivery and cell implantation. Journal of Materials Chemistry, 16(32): 3 252–3 267.CrossRefGoogle Scholar
  31. Wenda S, Illner S, Mell A, Kragl U. 2011. Industrial biotechnology–the future of green chemistry? Green Chemistry, 13(11): 3 007–3 047.CrossRefGoogle Scholar
  32. Wohlgemuth R. 2010. Biocatalysis–key to sustainable industrial chemistry. Current Opinion in Biotechnology, 21(6): 713–724.CrossRefGoogle Scholar
  33. Wu Z L, Yuan Y J, Hu P, Hu Z D. 1998. Studies on the twoliquid–phase culture of Japanese yew( Taxus cuspidata ) for the production of paclitaxel. Chinese Traditional Herbal Drugs, 29(9): 589–592.(in Chinese with English abstract)Google Scholar
  34. Yang Z Y, Ni Y, Sun Z H. 2009. Recent trend of nonaqueous enzymology and biocatalysis in nonaqueous media. Chinese Journal of Biotechnology, 25(12): 1 779–1 783.(in Chinese with English abstract)Google Scholar
  35. Yu H L, Ou L, Xu J H. 2010a. New trends in non–aqueous biocatalysis. Current Organic Chemistry, 14(14): 1 424–1 432.CrossRefGoogle Scholar
  36. Yu W T, Lin J Z, Liu X D, Xie H G, Zhao W, Ma X J. 2010b. Quantitative characterization of membrane formation process of alginate–chitosan microcapsules by GPC. Journal of Membrane Science, 346(2): 296–301.CrossRefGoogle Scholar
  37. Yu W T, Song H Y, Zheng G S, Liu X D, Zhang Y, Ma X J. 2011. Study on membrane characteristics of alginatechitosan microcapsule with cell growth. Journal of Membrane Science, 377(1–2): 214–220.CrossRefGoogle Scholar
  38. Zhang F, Xue Y, Li L, Wang M. 2010. Asymmetric reduction of 3, 5–Bistrifluoromethylphenyl acetophenone by immobilized Saccharomyces rhodotorula in biphasic system. Pharmaceutical Biotechnology, 17(2): 125–129.(in Chinese with English abstract)Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Environment and Chemical EngineeringDalian UniversityDalianChina
  2. 2.Affiliated Zhongshan Hospital of Dalian UniversityDalianChina
  3. 3.State Key Laboratory of Bioactive Seaweed SubstancesQingdao Brightmoon Seaweed Group Co. Ltd.QingdaoChina
  4. 4.Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations