Response of the western North Pacific subtropical ocean to the slow-moving super typhoon Nanmadol

  • Bing Yang
  • Yijun HouEmail author
  • Min Li


Based on in-situ observation, satellite and reanalysis data, responses of the western North Pacific subtropical ocean (WNPSO) to the slow-moving category 5 super typhoon Nanmadol in 2011 are analyzed. The dynamical response is dominated by near-inertial currents and Ekman currents with maximum amplitude of 0.39 m/s and 0.15 m/s, respectively. The near-inertial currents concentrated around 100 m below the sea surface and had an e-folding timescale of 4 days. The near-inertial energy propagated both upward and downward, and the vertical phase speed and wavelength were estimated to be 5 m/h and 175 m, respectively. The frequency of the near-inertial currents was blue-shifted near the surface and redshifted in ocean interior which may relate to wave propagation and/or background vorticity. The resultant surface cooling reaches -4.35°C and happens when translation speed of Nanmadol is smaller than 3.0 m/s. When Nanmadol reaches super typhoon intensity, the cooling is less than 3.0°C suggesting that the typhoon translation speed plays important roles as well as typhoon intensity in surface cooling. Upwelling induced by the slow-moving typhoon wind leads to typhoon track confined cooling area and the right-hand bias of cooling is slight. The mixed layer cooling and thermocline warming are induced by wind-generated upwelling and vertical entrainment. Vertical entrainment also led to mixed layer salinity increase and thermocline salinity decrease, however, mixed layer salinity decrease occurs at certain stations as well. Our results suggest that typhoon translation speed is a vital factor responsible for the oceanic thermohaline and dynamical responses, and the small Mach number (slow typhoon translation speed) facilitate development of Ekman current and upwelling.


oceanic response western North Pacific subtropical ocean South China Sea Typhoon Nanmadol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to thank Dr. LIU Ze, LIN Feilong and the crew of R/V Dongfanghong No. 2 for collection of the in-situ observation data.


  1. Alford M H, MacKinnon J A, Simmons H L, Nash J D. 2016. Near–inertial internal gravity waves in the ocean. Annu. Rev. Mar. Sci., 8: 95–123.Google Scholar
  2. Alford M H. 2001a. Fine–structure contamination: observations and a model of a simple two–wave case. J. Phys. Oceanogr., 31(9): 2 654–2 649.Google Scholar
  3. Alford M H. 2001b. Internal swell generation: the spatial distribution of energy flux from the wind to mixed layer near–inertial motions. J. Phys. Oceanogr., 31(8): 2 359–2 368.Google Scholar
  4. Amante C, Eakins B W. 2009. ETOPO1 1 Arc–Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC–24. National Geophysical Data Center, NOAA, Boulder, Colorado.Google Scholar
  5. Bell M M, Montgomery M T. 2008. Observed structure, evolution, and potential intensity of category 5 Hurricane Isabel(2003) from 12 to 14 September. Mon. Wea. Rev., 136(6): 2 023–2 046.Google Scholar
  6. Chen G X, Xue H J, Wang D X, Xie Q. 2013. Observed nearinertial kinetic energy in the northwestern South China Sea. J. Geophys. Res. Oceans, 118(10): 4 965–4 977.Google Scholar
  7. Chen X Y, Pan D L, He X Q, Bai Y, Wang D F. 2012. Upper ocean responses to category 5 typhoon Megi in the western north Pacific. Acta Oceanol. Sin., 31(1): 51–58.Google Scholar
  8. Chiang T L, Wu C R, Oey L Y. 2011. Typhoon Kai–Tak: an ocean’s perfect storm. J. Phys. Oceanogr., 42(1): 221–233.Google Scholar
  9. D’Asaro E A, Sanford T B, Niiler P P, Terrill E J. 2007. Cold wake of Hurricane Frances. Geophys. Res. Lett., 34(15): L15609.Google Scholar
  10. D’Asaro E A. 1985. The energy flux from the wind to nearinertial motions in the surface mixed layer. J. Phys. Oceanogr., 15(8): 1 043–1 059.Google Scholar
  11. D’Asaro E A. 2003. The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr., 33(3): 561–579.Google Scholar
  12. D’Asaro E, Black P, Centurioni L, Harr P, Jayne S, Lin I I, Lee C, Morzel J, Mrvaljevic R, Niiler P P, Rainville L, Stanford T, Tang T Y. 2011. Typhoon–ocean interaction in the western North Pacific: Part 1. Oceanogr., 24(4): 24–31.Google Scholar
  13. Domingues R, Goni G, Bringas F, Lee S K, Kim H S, Halliwell G, Dong J L, Morell J, Pomales L. 2015. Upper ocean response to Hurricane Gonzalo(2014): salinity effects revealed by targeted and sustained underwater glider observations. Geophys. Res. Lett., 42(17): 7 131–7 138.Google Scholar
  14. Emanuel K A. 1999. Thermodynamic control of hurricane intensity. Nature, 401(6754): 665–669.Google Scholar
  15. Fofonoff N P, Millard R C Jr. 1983. Algorithms for Computation of Fundamental Properties of Seawater. UNESCO Technical Papers in Marine Science, UNESCO, Paris.Google Scholar
  16. Geisler J E. 1970. Linear theory of the response of a two layer ocean to a moving hurricane. Geophys. Fluid Dyn., 1(1–2): 249–272.Google Scholar
  17. Gill A E. 1984. On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., 14(7): 1 129–1 151.Google Scholar
  18. Ginis I. 2002. Tropical cyclone–ocean interactions. In: Perrie W ed. Atmosphere–Ocean Interactions. WIT Press, Southampton, 33: 83–114.Google Scholar
  19. Gonella J. 1972. A rotary–component method for analysing meteorological and oceanographic vector time series. Deep Sea Res. Oceanogr. Abstr., 19(12): 833–846.Google Scholar
  20. Greatbatch R J. 1984. On the response of the ocean to a moving storm: parameters and scales. J. Phys. Oceanogr., 14(1): 59–78.Google Scholar
  21. Guan S D, Zhao W, Huthnance J, Tian J W, Wang J H. 2014. Observed upper ocean response to typhoon Megi(2010) in the Northern South China Sea. J. Geophys. Res. Oceans, 119(5): 3 134–3 157.Google Scholar
  22. Jaimes B, Shay L K. 2010. Near–inertial wave wake of Hurricanes Katrina and Rita over mesoscale oceanic eddies. J. Phys. Oceanogr., 40(6): 1 320–1 337.Google Scholar
  23. Knaff J A, DeMaria M, Sampson C R, Peak J E, Cummings J, Schubert W H. 2013. Upper oceanic energy response to tropical cyclone passage. J. Climate, 26(8): 2 631–2 650.Google Scholar
  24. Ko D S, Chao S Y, Wu C C, Lin I I. 2014. Impacts of typhoon Megi(2010) on the South China Sea. J. Geophys. Res. Oceans, 119(7): 4 474–4 489.Google Scholar
  25. Kuo Y C, Chern C S, Wang J, Tsai Y L. 2011. Numerical study of upper ocean response to a typhoon moving zonally across the Luzon Strait. Ocean Dyn., 61(11): 1 783–1 795.Google Scholar
  26. Leaman K D, Sanford T B. 1975. Vertical energy propagation of inertial waves: a vector spectral analysis of velocity profiles. J. Geophys. Res., 80(15): 1 975–1 978.Google Scholar
  27. Lee D K, Niiler P P. 1998. The inertial chimney: the nearinertial energy drainage from the ocean surface to the deep layer. J. Geophys. Res. Oceans, 103(C4): 7 579–7 591.Google Scholar
  28. Li Z L, Wen P. 2017. Comparison between the response of the Northwest Pacific Ocean and the South China Sea to Typhoon Megi(2010). Adv. Atmos. Sci., 34(1): 79–87.Google Scholar
  29. Lin I I, Pun I F, Wu C C. 2009. Upper–ocean thermal structure and the western North Pacific category 5 typhoons. Part II: dependence on translation speed. Mon. Wea. Rev., 137(11): 3 744–3 757.Google Scholar
  30. Lin I I. 2012. Typhoon–induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean. J. Geophys. Res. Oceans, 117(C3): C03039.Google Scholar
  31. Liu S S, Sun L, Wu Q Y, Yang Y J. 2017. The responses of cyclonic and anticyclonic eddies to typhoon forcing: the vertical temperature–salinity structure changes associated with the horizontal convergence/divergence. J. Geophys. Res. Oceans, 122(6): 4 974–4 989.Google Scholar
  32. Liu Z H, Xu J P, Sun C H, Wu X F. 2014. An upper ocean response to Typhoon Bolaven analyzed with Argo profiling floats. Acta Oceanol. Sin., 33(11): 90–101.Google Scholar
  33. Liu Z, Hou Y J, Xie Q, Hu P, Liu Y H. 2015. The upper–ocean response to typhoons as measured at a moored acoustic Doppler current profiler. Chin. J. Oceanol. Limnol., 33(5): 1 256–1 264.Google Scholar
  34. Maneesha K, Murty V S N, Ravichandran M, Lee T, Yu W D, McPhaden M J. 2012. Upper ocean variability in the Bay of Bengal during the tropical cyclones Nargis and Laila. Prog. Oceanogr., 106: 49–61.Google Scholar
  35. Mei W, Lien C C, Lin I I, Xie S P. 2015. Tropical cycloneinduced ocean response: a comparative study of the South China Sea and tropical Northwest Pacific. J. Climate, 28(15): 5 952–5 968.Google Scholar
  36. Mei W, Pasquero C, Primeau F. 2012. The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys. Res. Lett., 39(7): L07801.Google Scholar
  37. Mei W, Pasquero C. 2013. Spatial and temporal characterization of sea surface temperature response to tropical cyclones. J. Climate, 26(11): 3 745–3 765.Google Scholar
  38. Meyers P C, Shay L K, Brewster J K, Jaimes B. 2016. Observed ocean thermal response to Hurricanes Gustav and Ike. J. Geophys. Res. Oceans, 121(1): 162–179.Google Scholar
  39. Oey L Y, Ezer T, Wang D P, Fan S J, Yin X Q. 2006. Loop Current warming by Hurricane Wilma. Geophys. Res. Lett., 33(8): L08613.Google Scholar
  40. Pollard R T, Millard R C Jr. 1970. Comparison between observed and simulated wind–generated inertial oscillations. Deep Sea Res. Oceanogr. Abstr., 17(4): 813–816. IN5, 817–821.Google Scholar
  41. Price J F, Sanford T B, Forristall G Z. 1994. Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24(2): 233–260.Google Scholar
  42. Price J F, Weller R A, Pinkel R. 1986. Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res. Oceans, 91(C7): 8 411–8 427.Google Scholar
  43. Price J F. 1981. Upper ocean response to a hurricane. J. Phys. Oceanogr., 11(2): 153–175.Google Scholar
  44. Pun I F, Lin I I, Lien C C, Wu C C. 2018. Influence of the size of supertyphoon Megi(2010) on SST cooling. Mon. Wea. Rev., 146(3): 661–677.Google Scholar
  45. Shay L K, Elsberry R L. 1987. Near–inertial ocean current response to Hurricane Frederic. J. Phys. Oceanogr., 17(8): 1 249–1 269.Google Scholar
  46. Shu Y Q, Pan J Y, Wang D X, Chen G X, Sun L, Yao J L. 2016. Generation of near–inertial oscillations by summer monsoon onset over the South China Sea in 1998 and 1999. Deep Sea Res. I, 118: 10–19.Google Scholar
  47. Sun J R, Oey L Y, Chang R, Xu F H, Huang S M. 2015. Ocean response to typhoon Nuri(2008) in western Pacific and South China Sea. Ocean Dyn., 65(5): 735–749.Google Scholar
  48. Sun L, Yang Y J, Xian T, Wang Y, Fu Y F. 2012. Ocean responses to Typhoon Namtheun explored with Argo floats and multiplatform satellites. Atmos. Ocean., 50(S1): 15–26.Google Scholar
  49. Sun Z Y, Hu J Y, Zheng Q A, Li C Y. 2011. Strong near–inertial oscillations in geostrophic shear in the northern South China Sea. J. Oceanogr., 67(4): 377–384.Google Scholar
  50. Tseng Y H, Jan S, Dietrich D E, Lin I I, Chang Y T, Tang T Y. 2010. Modeled oceanic response and sea surface cooling to Typhoon Kai–Tak. Terr. Atmos. Ocean. Sci., 21(1): 85–98.Google Scholar
  51. Vincent E M, Emanuel K A, Lengaigne M, Vialard J, Madec G. 2014. Influence of upper ocean stratification interannual variability on tropical cyclones. J. Adv. Model. Earth Syst., 6(3): 680–699.Google Scholar
  52. Wang G H, Wu L W, Johnson N C, Ling Z. 2016. Observed three–dimensional structure of ocean cooling induced by Pacific tropical cyclones. Geophys. Res. Lett., 43(14): 7 632–7 638.Google Scholar
  53. Watanabe M, Hibiya T. 2002. Global estimates of the windinduced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29(8): 1 239.Google Scholar
  54. Webster P J, Holland G J, Curry J A, Chang H R. 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309(5742): 1 844–1 846.Google Scholar
  55. Wu C C, Tu W T, Pun I F, Lin I I, Peng M S. 2016. Tropical cyclone–ocean interaction in Typhoon Megi(2010)—A synergy study based on ITOP observations and atmosphere–ocean coupled model simulations. J. Geophys. Res. Atmos., 121(1): 153–167.Google Scholar
  56. Yang B, Hou Y J, Hu P, Liu Z, Liu, Y H. 2015b. Shallow ocean response to tropical cyclones observed on the continental shelf of the northwestern South China Sea. J. Geophys. Res. Oceans, 120(5): 3 817–3 836.Google Scholar
  57. Yang B, Hou Y J. 2014. Near–inertial waves in the wake of 2011 Typhoon Nesat in the northern South China Sea. Acta Oceanol. Sin., 33(11): 102–111.Google Scholar
  58. Yang B, Hou, Y J, Hu P. 2015a. Observed near–inertial waves in the wake of Typhoon Hagupit in the northern South China Sea. Chin. J. Oceanol. Limnol., 33(5): 1 265–1 278.Google Scholar
  59. Yang Y J, Sun L, Duan A M, Li Y B, Fu Y F, Yan Y F, Wang Z Q, Xian T. 2012. Impacts of the binary typhoons on upper ocean environments in November 2007. J. Appl. Remote Sens., 6(1): 063583.Google Scholar
  60. Zedler S E, Niiler P P, Stammer D, Terrill E, Morzel J. 2009. Ocean’s response to Hurricane Frances and its implications for drag coefficient parameterization at high wind speeds. J. Geophys. Res., 114: C04016.Google Scholar
  61. Zhang H, Chen D, Zhou L, Liu X H, Ding T, Zhou B F. 2016. Upper ocean response to typhoon Kalmaegi(2014). J. Geophys. Res. Oceans, 121(8): 6 520–6 535.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Key Laboratory of Ocean Circulation and WavesChinese Academy of SciencesQingdaoChina
  3. 3.Laboratory for Ocean and Climate DynamicsQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  4. 4.Institute of Oceanographic InstrumentationShandong Academy of SciencesQingdaoChina

Personalised recommendations