Advertisement

Spatial distribution and filtering efficiency of Daphnia in a deep subtropical reservoir

  • Man Zhang
  • Rebecca Ashley Smyth
  • Weixia Zhu
  • Li Zhang
  • Yuncong Li
  • Yifan Wang
  • Xuejun LiEmail author
  • Qianhong Gu
  • Yunni Gao
Article
  • 8 Downloads

Abstract

Studies of Daphnia distribution and function could help people manage and protect water quality. We investigated how spatial distribution and filtering efficiency of Daphnia in the transition and lacustrine zones of the Nanwan Reservoir (China). Samplings were conducted seasonally for 2 years from six sites in the reservoir. Daphnia abundance and biomass were significantly higher in the lacustrine zone than in the transition zone. Similar composition and biomass of edible phytoplankton were found in the two zones, suggesting that food quantity could not explain high Daphnia distribution in the lacustrine zone. The variations of water velocity and food quality could help explaining Daphnia patchy distribution in the reservoir. On the one hand, rapid water velocity can cause the Daphnia decrement in the transition zone. On the other hand, the ratio of particulate organic carbon (POC) to chlorophyll-a (chl-a ) concentration was significantly higher in the transition zone, indicating more allochthonous material constituted the food source for Daphnia. The lower quality food likely suppressed Daphnia development in the transition zone. A linear regression between Daphnia abundance and Secchi depth (SD) may suggest a cause-effect relationship where increased filtering efficiency was responsible for increased water clarity to some extent.

Keyword

Daphnia lacustrine zone transition zone water clarity Nanwan Reservoir 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian R, O’Reilly C M, Zagarese H, Baines S B, Hessen D O, Keller W, Livingstone D M, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer G A, Winder M. 2009. Lakes as sentinels of climate change. Limnol. Oceanogr., 54(6): 2 283–2 297.CrossRefGoogle Scholar
  2. Altshuler I, Demiri B, Xu S, Constantin A, Yan N D, Cristescu M E. 2011. An integrated multi–disciplinary approach for studying multiple stressors in freshwater ecosystems: Daphnia as a model organism. Integr. Comp. Biol., 51(4): 623–633.CrossRefGoogle Scholar
  3. American Public Health Association(APHA). 1989. Standard Methods for the Examination of Water and Wastewater. 17 th edn. APHA–AWWA–WPCF, Washington DC.Google Scholar
  4. Betini G S, Avgar T, McCann K S, Fryxell J M. 2017. Daphnia inhibits the emergence of spatial pattern in a simple consumer–resource system. Ecology, 98(4): 1 163–1 170.CrossRefGoogle Scholar
  5. Brett M T, Kainz M J, Taipale S J, Seshan H. 2009. Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proc. Natl. Acad. Sci. USA, 106(50): 21 197–21 201.CrossRefGoogle Scholar
  6. Burns C W. 1968. The relationship between body size of filterfeeding Cladocera and the maximum size of particle ingested. Limnol. Oceanogr., 13(4): 675–678.CrossRefGoogle Scholar
  7. Burns C W. 1969. Relation between filtering rate, temperature, and body size in four species of Daphnia. Limnol. Oceanogr., 14(5): 693–700.CrossRefGoogle Scholar
  8. Carlson R E. 1977. A trophic state index for lakes. Limnol. Oceanogr., 22(2): 361–369.CrossRefGoogle Scholar
  9. Cyr H, Curtis J M. 1999. Zooplankton community size structure and taxonomic composition affects size–selective grazing in natural communities. Oecologia, 118(3): 306–315.CrossRefGoogle Scholar
  10. Da Rosa L M, De Souza Cardoso L, Crossetti L O, Da Motta–Marques D. 2017. Spatial and temporal variability of zooplankton–phytoplankton interactions in a large subtropical shallow lake dominated by non–toxic cyanobacteria. Mar. Freshwater Res., 68(2): 226–243.CrossRefGoogle Scholar
  11. De Senerpont Domis L N, Elser J J, Gsell A S, Huszar V L M, Ibelings B W, Jeppesen E, Kosten S, Mooij W M, Roland F, Sommer U, Van Donk E, Winder M, Lürling M. 2013. Plankton dynamics under different climatic conditions in space and time. Freshwater Biol., 58(3): 463–482.CrossRefGoogle Scholar
  12. Effler S W, Spada M E, Gelda R K, Peng F, Matthews D A, Kearns C M, Hairston N G Jr. 2015. Daphnia grazing, the clear water phase, and implications of minerogenic particles in Onondaga Lake. Inland Waters, 5(4): 317–330.CrossRefGoogle Scholar
  13. Elser J J, Hayakawa K, Urabe J. 2001. Nutrient limitation reduces food quality for zooplankton: Daphnia response to seston phosphorus enrichment. Ecology, 82(3): 898–903.CrossRefGoogle Scholar
  14. Fischer J M, Olson M H, Williamson C E, Everhart J C, Hogan P J, Mack J A, Rose K C, Saros J E, Stone J R, Vinebrooke R D. 2011. Implications of climate change for Daphnia in Alpine lakes: predictions from long–term dynamics, spatial distribution, and a short–term experiment. Hydrobiologia, 676(1): 263–277.CrossRefGoogle Scholar
  15. Han B P, Liu Z W. 2011. Tropical and Sub–Tropical Reservoir Limnology in China: Theory and Practice. Springer, Dordrecht.Google Scholar
  16. Havens K E, Beaver J R. 2013. Zooplankton to phytoplankton biomass ratios in shallow Florida lakes: an evaluation of seasonality and hypotheses about factors controlling variability. Hydrobiologia, 703(1): 177–187.Google Scholar
  17. Hillebrand H, Dürselen C D, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol., 35(2): 403–424.CrossRefGoogle Scholar
  18. Kalff J. 2002. Limnology: Inland Water Ecosystems. Upper Saddle River Press, Prentice Hall.Google Scholar
  19. Kasprzak P, Lathrop R C, Carpenter S R. 1999. Influence of different sized Daphnia species on chlorophyll concentration and summer phytoplankton community structure in eutrophic Wisconsin lakes. J. Plankton Res., 21(11): 2 161–2 174.CrossRefGoogle Scholar
  20. Kirk J T O. 2011. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.Google Scholar
  21. Kvam O V, Kleiven O T. 1995. Diel horizontal migration and swarm formation in Daphnia in response to Chaoborus. Hydrobiologia, 307(1–3): 177–184.Google Scholar
  22. Lin S J, He L J, Huang P S, Han B P. 2005. Comparison and improvement on the extraction method for chlorophyll a in phytoplankton. Ecol. Sci., 24(1): 9–11.(in Chinese with English abstract)Google Scholar
  23. Lorenzen C J. 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol. Oceanogr., 12(2): 343–346.CrossRefGoogle Scholar
  24. Marra J. 2002. Approaches to the measurement of plankton production. In: Williams P J L B, Thomas D N, Reynolds C S eds. Phytoplankton Productivity: Carbon Assimilation in Marine and Freshwater Ecosystems. Blackwell Science Ltd, Oxford. p.78–108.CrossRefGoogle Scholar
  25. McMeans B C, Koussoroplis A M, Kainz M J. 2015. Effects of seasonal seston and temperature changes on lake zooplankton fatty acids. Limnol. Oceanogr., 60(2): 573–583.CrossRefGoogle Scholar
  26. Meybeck M, Cauwet G, Dessery S, Somville M, Gouleau D, Billen G. 1988. Nutrients(organic C, P, N, Si) in the eutrophic River Loire(France) and its estuary. Estuar., Coast Shelf Sci., 27(6): 595–624.CrossRefGoogle Scholar
  27. Muylaert K, Declerck S, Geenens V, Van Wichelen J, Degans H, Vandekerkhove J, Van der Gucht K, Vloemans N, Rommens W, Rejas D, Urrutia R, Sabbe K, Gillis M, Decleer K, De Meester L, Vyverman W. 2003. Zooplankton, phytoplankton and the microbial food web in two turbid and two clearwater shallow lakes in Belgium. Aquat. Ecol., 37(2): 137–150.CrossRefGoogle Scholar
  28. Persson J, Brett M T, Vrede T, Ravet J L. 2007. Food quantity and quality regulation of trophic transfer between primary producers and a keystone grazer( Daphnia ) in pelagic freshwater food webs. Oikos, 116(7): 1 152–1 163.CrossRefGoogle Scholar
  29. Pinel–Alloul B. 1995. Spatial heterogeneity as a multiscale characteristic of zooplankton community. Hydrobiologia, 300–301(1): 17–42.CrossRefGoogle Scholar
  30. Sarnelle O. 2005. Daphnia as keystone predators: effects on phytoplankton diversity and grazing resistance. J. Plankton Res., 27(12): 1 229–1 238.CrossRefGoogle Scholar
  31. Taipale S J, Brett M T, Hahn M W, Martin–Creuzburg D, Yeung S, Hiltunen M, Strandberg U, Kankaala P. 2014. Differing Daphnia magna assimilation efficiencies for terrestrial, bacterial, and algal carbon and fatty acids. Ecology, 95(2): 563–576.CrossRefGoogle Scholar
  32. Taipale S J, Kainz M J, Brett M T. 2011. Diet–switching experiments show rapid accumulation and preferential retention of highly unsaturated fatty acids in Daphnia. Oikos, 120(11): 1 674–1 682.CrossRefGoogle Scholar
  33. Tirok K, Gaedke U. 2006. Spring weather determines the relative importance of ciliates, rotifers and crustaceans for the initiation of the clear–water phase in a large, deep lake. J. Plankton Res., 28(4): 361–373.CrossRefGoogle Scholar
  34. Verreth J. 1990. The accuracy of population density estimates of a horizontally distributed zooplankton community in Dutch fish ponds. Hydrobiologia, 203(1–2): 53–61.CrossRefGoogle Scholar
  35. Wetzel R G. 1995. Death, detritus, and energy flow in aquatic ecosystems. Freshwater Biol., 33(1): 83–89.CrossRefGoogle Scholar
  36. Wiedenheft W D. 1984. Establishment of Aquatic Baselines in Large Inland Impoundments: Segment 3 Report. US Department of Commerce, Helena.Google Scholar
  37. Yu G Z, Huang K, Chen F Y, Gao H, Zhao C M. 2009. Eco–environmental problems with the development on large–scale reservoirs in Xinyang City—using Nanwan reservoir as an example. J. Hydroecol., 2(1): 142–146.(in Chinese with English abstract)Google Scholar
  38. Zhang M, Lin Q Q, Xiao L J, Wang S, Qian X, Han B P. 2013. Effect of intensive epilimnetic withdrawal on the phytoplankton in a(sub)tropical deep reservoir. J. Limnol., 72(3): 430–439.CrossRefGoogle Scholar
  39. Zhang Z S, Huang X F. 1991. Research Methods of Freshwater Plankton. Science Press, Beijing.(in Chinese)Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Man Zhang
    • 1
    • 2
  • Rebecca Ashley Smyth
    • 2
  • Weixia Zhu
    • 3
  • Li Zhang
    • 3
  • Yuncong Li
    • 2
  • Yifan Wang
    • 1
  • Xuejun Li
    • 1
    Email author
  • Qianhong Gu
    • 1
  • Yunni Gao
    • 1
  1. 1.College of FisheriesHenan Normal UniversityXinxiangChina
  2. 2.Tropical Research and Education CentreUniversity of FloridaHomesteadUSA
  3. 3.Henan Entry-Exit Inspection and Quarantine BureauZhengzhouChina

Personalised recommendations