Advertisement

Journal of Oceanology and Limnology

, Volume 37, Issue 2, pp 657–664 | Cite as

Physiological differences in the growth and maturation of Eisenia bicyclis and Ecklonia cava gametophytes in Korea

  • Han Gil Choi
  • Da Vine Jeon
  • Seo Kyoung Park
  • Xu GaoEmail author
Biology
  • 14 Downloads

Abstract

The objective of this study was to examine the effects of temperature and light intensity on growth of female gametophytes of Eisenia bicyclis and Ecklonia cava and responses of these female gametophytes to Fe addition and daylength. Female gametophytes of each species were cultured at four temperatures (10, 15, 20, and 25°C) and under a combination of four light intensities (10, 20, 40, and 80 μmol photons/(m 2 ·s)) with two temperatures (15 and 20°C for E i. bicyclis; 20 and 25°C for E c. cava) to clarify their optimal growth conditions. Growth and maturation of female gametophytes of these two species under a combination of five Fe-EDTA concentrations (0, 1, 2, 4, and 8 μmol/L) and three daylengths (10, 12, and 14 h) were also examined. The growth of E i. bicyclis gametophyte was maximal at approximately 15–20°C, 20 μmol photons/(m 2 ·s), Fe-EDTA concentration of 8 μmol/L and daylengths of 12–14 h. While E c. cava gametophytes showed optimal growth at approximately 20–25°C, 20 μmol photons/(m 2 ·s), Fe- EDTA concentration of 8 μmol/L and daylength of 14 h. Maturation of gametophytes was enhanced at Fe-EDTA concentration of 4 μmol/L for E i. bicyclis and at 2 μmol/L for E c. cava. In conclusion, optimal growth temperatures and Fe-EDTA concentrations for maturation of E i. bicyclis and E c. cava gametophytes were different. Higher optimal growth temperature for E c. cava gametophytes may contribute to its wider geographical distribution compared to E i. bicyclis which has restricted habitats in Korea. This suggests that addition of Fe ion could be used to recover beds of these two species in barren grounds of Korea.

Keyword

Ecklonia cava Eisenia bicyclis gametophyte growth maturation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

We would like to thank anonymous reviewers for their helpful comments and suggestions that improved the manuscript. This paper was supported by Wonkwang University in 2017.

References

  1. Altamirano M, Murakami A, Kawai H. 2003. Photosynthetic performance and pigment content of different developmental stages of Ecklonia cava (Laminariales, Phaeophyceae). Bot. Mar., 46 (1): 9–16.CrossRefGoogle Scholar
  2. Arakawa H, Ido M, Arimoto M, Agatsuma Y. 2013. Combined effects of high water temperature and low flow velocity on survival of brown algae Eisenia bicyclis and Ecklonia cava. Can. J. Plant Prot., 1 (4): 125–128.Google Scholar
  3. Baba M. 2010. Effects of temperature and irradiance on the growth of gametophyte and young sporophyte of Eisenia bicyclis in laboratory culture. Rep. Mar. Ecol. Res. Inst., 13: 75–82. (in Japanese with English abstract)Google Scholar
  4. Breeman A M, Pakker H. 1994. Temperature ecotypes in seaweeds: adaptive significance and biogeographic implications. Bot. Mar., 37 (3): 171–180.CrossRefGoogle Scholar
  5. Cao S Q, Zhang Z Y, Li X L, You X C. 2014. Breeding and culture in cloned seedlings of sea weed Eisenia bicyclis. J. Dalian Ocean Univ., 29 (5): 425–430. (in Chinese with English abstract)Google Scholar
  6. Choi G C, Lee H W, Hong B K. 2009. Marine algal flora and community structure in Dokdo, East Sea, Korea. Korean J. Fish. Aquat. Sci., 42 (5): 503–508. (in Korean with English abstract)Google Scholar
  7. Eriksson B K, Rubach A, Hillebrand H. 2006. Biotic habitat complexity controls species diversity and nutrient effects on net biomass production. Ecology, 87 (1): 246–254.CrossRefGoogle Scholar
  8. Gao X, Endo H, Nagaki M, Agatsuma Y. 2016. Growth and survival of juvenile sporophytes of the kelp Ecklonia cava in response to different nitrogen and temperature regimes. Fish. Sci., 8 2 (4): 623–629.CrossRefGoogle Scholar
  9. Hori T. 1993. An Illustrated Atlas of the Life History of Algae. Vol. 2 Brown and Red Algae. Uchida Rokakuho Publishing Co., Ltd, Tokyo, Japan. 345p.Google Scholar
  10. Hwang E K, Gong Y G, Ha D S, Park C S. 2010. Nursery and main culture conditions for mass cultivation of the brown alga, Ecklonia cava Kjellman. Korean J. Fish. Aquat. Sci., 43 (6): 687–692. (in Korean with English abstract)Google Scholar
  11. Iwai H, Fukushima M, Yamamoto M, Motomura T. 2015. Seawater extractable organic matter (SWEOM) derived from a compost sample and its effect on the serving bioavailable Fe to the brown macroalga, Saccahrina japonica. Humic Substan. Res., 12: 5–20. (in Japanese with English abstract)Google Scholar
  12. Kang J W, Chung I K. 2015. Effects of temperature and light intensity on the gametophyte fragment growth of Ecklonia cava Kjellman (Laminariales, Phaeophyta). Korean J. Fish. Aquat. Sci., 48 (5): 704–711. (in Korean with English abstract)Google Scholar
  13. Kang R S, Won K S, Hong K P, Kim J M. 2001. Population studies on the kelp Ecklonia cava and Eisenia bicyclis in Dokdo, Korea. Algae, 16 (2): 209–215.CrossRefGoogle Scholar
  14. Kawashima S. 1993. An Illustrated Guide to Japanese Laminariales. Kita Nihon Kaiyo Center, Sapporo. 206p. (in Japanese)Google Scholar
  15. Kim M K, Kim K T. 2000. Studies on the seaweeds in the islands of Ullungdo and Dokdo: ?. Decrease of algal species compositions and changes of marine algal flora. Algae, 15 (2): 119–124.Google Scholar
  16. Levitt G J. 1993. Primary production of Cape of Good Hope littoral and sublittoral seaweeds. Trans. Roy. Soc. S. Afr., 48 (2): 339–350.CrossRefGoogle Scholar
  17. Lobban C S, Harrison P J. 1994. Seaweed Ecology and Physiology. Cambridge University Press, Cambridge. 366p.CrossRefGoogle Scholar
  18. Lorentsen S H, Sjøtun K, Grémillet D. 2010. Multi–trophic consequences of kelp harvest. Biol. Conserv., 143 (9): 2 054–2 062.CrossRefGoogle Scholar
  19. Maegawa M, Kida W, Yokohama Y, Aruga Y. 1988. Comparative studies on critical light conditions for young Eisenia bicyclis and Ecklonia cava. Jpn. J. Phycol., 36 (2): 166–174.Google Scholar
  20. Matsunaga K, Suzuki Y, Kuma K, Kudo I. 1994. Diffusion of Fe(??) from an iron propagation cage and its effect on tissue iron and pigments of macroalgae on the cage. J. Appl. Phycol., 6 (4): 397–403.CrossRefGoogle Scholar
  21. Miki O, Nagai T, Marzuki M, Okumura C, Kosugi C, Kato T. 2016. Effects of Fe fertilizer eluate on the growth of Sargassum horneri at the germling and immature stages. J. Appl. Phycol., 28 (3): 1 775–1 782.CrossRefGoogle Scholar
  22. Morita T, Kurashima A, Maegawa M. 2003a. Temperature requirements for the growth and maturation of the gametophytes of Undaria pinnatifida and U. undarioides (Laminariales, Phaeophyceae). Phycol. Res., 51 (3): 154–160.Google Scholar
  23. Morita T, Kurashima A, Maegawa M. 2003b. Temperature requirements for the growth of young sporophytes of Undaria pinnatifida and Undaria undarioides (Laminariales, Phaeophyceae). Phycol. Res., 51 (4): 266–270.CrossRefGoogle Scholar
  24. Motomura T, Sakai Y. 1981. Effect of chelated iron in culture media on oogenesis in Laminaria angustata. Bull. Jap. Soc. Sci. Fish., 47 (12): 1 535–1 540. (in Japanese with English abstract)CrossRefGoogle Scholar
  25. Motomura T, Sakai Y. 1984. Regulation of gametogenesis of Laminaria and Desmarestia (Phaeophyta) by iron and boron. Jpn. J. Phycol., 32 (3): 209–215.Google Scholar
  26. Muraoka D. 2008. Eisenia bicyclis bed coverage offOshika Peninsula, Japan, in relation to sporophyte survival and Strongylocentrotus nudus abundance. J. Appl. Phycol., 20 (5): 845–851.CrossRefGoogle Scholar
  27. Nagai T, Miki O, Okumura C. 2014. Effects of chelated iron on the growth of Sargassaceae species at the germling and immature stages. J. Water Environ. Technol., 12 (3): 285–294.CrossRefGoogle Scholar
  28. Nakayama Y, Arai S. 1999. Grazing of the brown alga Ecklonia cava by three herbivorous fishes on the coast of Nakagi, South Izu, central Japan. Jpn. J. Phycol., 47 (2): 105–112.Google Scholar
  29. Novaczek I. 1984. Response of gametophytes of Ecklonia radiata (Laminariales) to temperature in saturating light. Mar. Biol., 82 (3): 241–245.CrossRefGoogle Scholar
  30. Oh J C, Yu O H, Choi H G. 2015. Interactive effects of increased temperature and pCO 2 concentration on the growth of a brown algae Ecklonia cava in the sporophyte and gametophyte stages. Ocean Polar Res., 37 (3): 201–209. (in Korean with English abstract)CrossRefGoogle Scholar
  31. Rothäusler E, Gómez I, Karsten U, Tala F, Thiel M. 2011. Physiological acclimation of floating Macrocystis pyrifera to temperature and irradiance ensures long–term persistence at the sea surface at mid–latitudes. J. Exp. Mar. Biol. Ecol., 405 (1–2): 33–41.CrossRefGoogle Scholar
  32. Serisawa Y, Yokohama Y, Aruga Y, Tanaka J. 2002. Growth of Ecklonia cava (Laminariales, Phaeophyta) sporophytes transplanted to a locality with different temperature conditions. Phycol. Res., 50 (3): 201–207.CrossRefGoogle Scholar
  33. Sokal R R, Rohlf F J. 1995. Biometry: the Principles and Practices of Statistics in Biological Research. 3 rd edn. W.H. Freeman and Company, New York. 887p.Google Scholar
  34. Taniguchi K, Akiyama K. 1982. Effects of water temperature, light intensity and photoperiod on the growth and maturation of the gametophyte of Eisenia bicyclis (Kjellman) Setchell. Bull. Tohoku Reg. Fish. Res. Lab., 45: 55–59. (in Japanese with English abstract)Google Scholar
  35. Terawaki T, Hasegawa H, Arai S, Ohno M. 2001. Managementfree techniques for restoration of Eisenia and Ecklonia beds along the central Pacific coast of Japan. J. Appl. Phycol., 13 (1): 13–17.CrossRefGoogle Scholar
  36. Wi M Y, Hwang E K, Kim S C, Hwang M S, Baek J M, Park C S. 2008. Regeneration and maturation induction for the free–living gametophytes of Ecklonia cava Kjellman (Laminariales, Phaeophyta). J. Kor Fish. Soc., 41 (5): 381–388. (in Korean with English abstract)Google Scholar
  37. Wiencke C, Clayton M N, Gómez I, Iken K, Lüder U H, Amsler C D, Karsten U, Hanelt D, Bischof K, Dunton K. 2007. Life strategy, ecophysiology and ecology of seaweeds in polar waters. Rev. Environ. Sci. Bio /Technol., 6 (1–3): 95–126.CrossRefGoogle Scholar
  38. Yoshida T. 1970. On the productivity of the Eisenia bicyclis community. Bull. Tohoku Reg. Fish. Res. Lab., 30: 107–112. (in Japanese with English abstract)Google Scholar
  39. Yoshida T. 1998. Marine Algae of Japan. Uchida Roukakuho Publishing, Tokyo. 347p.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Han Gil Choi
    • 1
  • Da Vine Jeon
    • 1
  • Seo Kyoung Park
    • 1
  • Xu Gao
    • 1
    Email author
  1. 1.Faculty of Biological Science and Sea & BiotechWonkwang UniversityIksan, JeonbukKorea

Personalised recommendations