Advertisement

Verification and recalibration of HY-2A microwave radiometer brightness temperature

  • Yili ZhaoEmail author
  • Huimin Li
  • Chuntao Chen
  • Jianhua Zhu
Article
  • 15 Downloads

Abstract

HY-2A is the first one of the Chinese HY-2 ocean satellite series carrying a microwave radiometer (RM) to measure sea surface temperature, sea surface wind speed, atmospheric water vapor, cloud liquid water content, and rain rate. We verified the RM level 1B brightness temperature (TB) to retrieve environmental parameters. In the verification, TB that simulated using the ocean-atmosphere radiative transfer model (RTM) was used as a reference. The total bias and total standard deviation (SD) of the RM level 1B TB, with reference to the RTM simulation, ranged -20.6–4.38 K and 0.7–2.93 K, respectively. We found that both the total bias and the total SD depend on the frequency and polarization, although the values for ascending and descending passes are different. In addition, substantial seasonal variation of the bias was found at all channels. The verification results indicate the RM has some problems regarding calibration, e.g., correction of antenna spillover and antenna physical emission, especially for the 18.7-GHz channel. Based on error analyses, a statistical recalibration algorithm was designed and recalibration was performed for the RM level 1B TB. Validation of the recalibrated TB indicated that the quality of the recalibrated RM level 1B TB was improved significantly. The bias of the recalibrated TB at all channels was reduced to < 0.4 K, seasonal variation was almost eradicated, and SD was diminished (i.e., the SD of the 18.7-GHz channel was reduced by more than 0.5 K).

Keyword

HY-2A microwave radiometer brightness temperature (TBverification calibration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

The authors would like to thank the Remote Sensing System for supporting the WindSat environmental products and RTM. We also acknowledge JIN Xu from the China Academy of Space Technology (Xi’an) for helpful discussion on the characteristics of the HY-2A scanning microwave radiometer. The author Yili ZHAO thank the China Scholarship Council for supporting this study at LOPS/IFREMER in France.

References

  1. Alsweiss S O, Jelenak Z, Chang P S, Park J D, Meyers P. 2015. Inter-calibration results of the Advanced Microwave Scanning Radiometer-2 over ocean. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8 (9): 4 230–4 238, https://doi.org/10.1109/JSTARS.2014.2330980. CrossRefGoogle Scholar
  2. Bell W, Candy B, Atkinson N, Hilton F, Baker N, Bormann N, Kelly G, Kazumori M, Campbell W F, Swadley S D. 2008. The assimilation of SSMIS radiances in numerical weather prediction models. IEEE Transactions on Geoscience and Remote Sensing, 46 (4): 884–900, https://doi.org/10.1109/TGRS.2008.917335. CrossRefGoogle Scholar
  3. Bettenhausen M H, Smith C K, Bevilacqua R M, Gaiser P W, Cox S. 2006. A nonlinear optimization algorithm for WindSat wind vector retrievals. IEEE Transactions on Geoscience and Remote Sensing, 44 (3): 597–610.CrossRefGoogle Scholar
  4. Brucker L, Cavalieri D J, Markus T, Ivanoff A. 2014. NASA Team 2 sea ice concentration algorithm retrieval uncertainty. IEEE Transactions on Geoscience and Remote Sensing, 52 (11): 7 336–7 352.CrossRefGoogle Scholar
  5. Draper D W, Newell D A, Wentz F J, Krimchansky S, Skofronick-Jackson G M. 2015. The global precipitation measurement (GPM) microwave imager (GMI): instrument overview and early on-orbit performance. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8 (7): 3 452–3 462, https://doi.org/10.1109/JSTARS.2015.2403303. CrossRefGoogle Scholar
  6. Gaiser P W, St Germain K M, Twarog E M, Poe G A, Purdy W, Richardson D, Grossman W, Jones W L, Spencer D, Golba G, Cleveland J, Choy L, Bevilacqua R M, Chang P S. 2004. The WindSat spaceborne polarimetric microwave radiometer: sensor description and early orbit performance. IEEE Transactions on Geoscience and Remote Sensing, 42 (11): 2 347–2 361, https://doi.org/10.1109/TGRS.2004.836867. CrossRefGoogle Scholar
  7. Guan L, Liu M K. 2015. Evaluation of sea surface temperature from HY-2 scanning microwave radiometer. In: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, Milan, Italy. p.961–964, https://doi.org/10.1109/IGARSS.2015.7325927. CrossRefGoogle Scholar
  8. Huang X Q, Zhu J H, Lin M S, Zhao Y L, Wang H, Chen C T, Peng H L, Zhang Y G. 2014a. A preliminary assessment of the sea surface wind speed production of HY-2 scanning microwave radiometer. Acta Oceanologica Sinica, 33 (1): 114–119, https://doi.org/10.1007/s13131-014-0403-z. CrossRefGoogle Scholar
  9. Huang X Q, Zhu J H, Zhao Y L, Wang H, Chen C T. 2014b. Preliminary validation of total water vapor column production of scanning microwave radiometer onboard HY-2 satellite. IOP Conference Series: Earth and Environmental Science, 17 (1): 012277, https://doi.org/10.1088/1755-1315/17/1/012277. CrossRefGoogle Scholar
  10. Jiang X W, Lin M S, Liu J Q, Zhang Y G, Xie X T, Peng H L, Zhou W. 2012. The HY-2 satellite and its preliminary assessment. International Journal of Digital Earth, 5 (3): 266–281, https://doi.org/10.1080/17538947.2012.658685. CrossRefGoogle Scholar
  11. Kroodsma R A, McKague D S, Ruf C S. 2012. Inter-calibration of microwave radiometers using the vicarious cold calibration double difference method. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5 (3): 1 006–1 013, https://doi.org/10.1109/JSTARS.2012.2195773. CrossRefGoogle Scholar
  12. Kunkee D B, Poe G A, Boucher D J, Swadley S D, Hong Y, Wessel J E, Uliana E A. 2008. Design and evaluation of the first special sensor microwave imager/sounder. IEEE Transactions on Geoscience and Remote Sensing, 46 (4): 863–883, https://doi.org/10.1109/TGRS.2008.917980. CrossRefGoogle Scholar
  13. Li Y M, Li J, Hu T Y, Duan C D, Chen W X, Lei W N. 2014. In-orbit correction and optimization design of the calibration assembly for HY-2 microwave radiometer. In: 2014 IEEE Geoscience and Remote Sensing Symposium (IGARSS). IEEE, Quebec City, QC, Canada. p. 5 183–5 186, https://doi.org/10.1109/IGARSS.2014.6947666. Google Scholar
  14. Liebe H J. 1989. MPM—An atmospheric millimeter-wave propagation model. International Journal of Infrared & Millimeter Waves, 10 (6): 631–650.CrossRefGoogle Scholar
  15. Liu M K, Guan L, Zhao W, Chen G. 2017. Evaluation of sea surface temperature from the HY-2 scanning microwave radiometer. IEEE Transactions on Geoscience and Remote Sensing, 55 (3): 1 372–1 380, https://doi.org/10.1109/TGRS.2016.2623641. CrossRefGoogle Scholar
  16. Meissner T, Wentz F J. 2012. The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles. IEEE Transactions on Geoscience and Remote Sensing, 50 (8): 3 004–3 026, https://doi.org/10.1109/TGRS.2011.2179662. CrossRefGoogle Scholar
  17. Meissner T, Wentz F, Draper D. 2012. GMI calibration algorithm and analysis theoretical basis document, Version G. In: Prepared by Remote Sensing Systems at 444 10th Street, Suite 200, Santa Rosa, CA 95401. Ball Aerospace & Technologies Corp. P.O. Box 1062, Boulder, CO 80306. 125p.Google Scholar
  18. Meissner T, Wentz F. 2005. Ocean retrievals for WindSat: radiative transfer model, algorithm, validation. In: Proceedings of OCEANS 2005 MTS/IEEE. IEEE, Washington, DC, USA. p.130–133, https://doi.org/10.1109/OCEANS.2005.1639750. Google Scholar
  19. Rozoff C M, Velden C S, Kaplan J, Kossin J P, Wimmers A J. 2015. Improvements in the probabilistic prediction of tropical cyclone rapid intensification with passive microwave observations. Wea ther and Forecasting, 30 (4): 1 016–1 038, https://doi.org/10.1175/WAF-D-14-00109.1. CrossRefGoogle Scholar
  20. Wang Z Z, Li Y, Yin X B. 2014. In-orbit calibration scanning microwave radiometer on HY-2 satellite of China. In: 2014 IEEE Geoscience and Remote Sensing Symposium (IGARSS). IEEE, Quebec City, QC, Canada, p.936–1 939, https://doi.org/10.1109/IGARSS.2014.6946838. Google Scholar
  21. Wentz F J, Draper D. 2016. On-orbit absolute calibration of the global precipitation measurement microwave imager. Journal of Atmospheric and Oceanic Technology, 33 (7): 1 393–1 412, https://doi.org/10.1175/JTECH-D-15-0212.1. CrossRefGoogle Scholar
  22. Wentz F J. 1997. A well-calibrated ocean algorithm for special sensor microwave/imager. Journal of Geophysical Research Ocean, 102 (C4): 8 703–8 718, https://doi.org/10.1029/96JC01751. CrossRefGoogle Scholar
  23. Wentz F J. 2013. SSM/I Version-7 Calibration Report. RSS Technical Report 11012, Remote Sensing Systems, Santa Rosa, Calif.Google Scholar
  24. Wentz F J. 2015. A 17-yr climate record of environmental parameters derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager. Journal of Climate, 28 (17): 6 882–6 902, https://doi.org/10.1175/JCLI-D-15-0155.1. CrossRefGoogle Scholar
  25. Zhang L, Shi H Q, Du H D, Zhu E Z, Zhang Z H, Fang X. 2016. Comparison of WindSat and buoy-measured ocean products from 2004 to 013. Acta Oceanologica Sinica, 35 (1): 67–78, https://doi.org/10.1007/s13131-016-0798-9. CrossRefGoogle Scholar
  26. Zhao Y L, Zhu J H, Lin M S, Chen C T, Huang X Q, Wang H, Zhang Y G, Peng H L. 2014. Assessment of the initial sea surface temperature product of the scanning microwave radiometer aboard on HY-2 satellite. Acta Oceanologica Sinica, 33 (1): 109–113, https://doi.org/10.1007/s13131-014-0402-0. CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yili Zhao
    • 1
    • 2
    Email author
  • Huimin Li
    • 2
  • Chuntao Chen
    • 1
  • Jianhua Zhu
    • 1
  1. 1.National Ocean Technology CentreTianjinChina
  2. 2.Laboratoire d’Oceanographie Physique et SpatialeIfremer, PlouzanéFrance

Personalised recommendations