Journal of Oceanology and Limnology

, Volume 37, Issue 2, pp 398–409 | Cite as

Contributions of the Bering Strait throughflow to oceanic meridional heat transport under modern and Last Glacial Maximum climate conditions

  • Cunjie Zhang
  • Xiaopei LinEmail author


Paleo reconstructions and model simulations have suggested the Bering Strait plays a pivotal role in climate change. However, the contribution of the Bering Strait throughflow to oceanic meridional heat transport (OMHT) is about 100 times smaller than the OMHT at low latitudes in the modern climate and it is generally ignored. Based on model simulations under modern and Last Glacial Maximum (LGM, ~21 ka; ka=thousand years ago) climate conditions, this study highlights the importance of the Bering Strait throughflow to OMHT. The interbasin OMHT induced by the Bering Strait throughflow is estimated by interbasin-intrabasin decomposition. Similar to barotropic-baroclinic-horizontal decomposition, we assume the nonzero net mass transport induced by interbasin throughflows is uniform across the entire section, and the interbasin term is separated to force zero net mass transport for the intrabasin term. Based on interbasinintrabasin decomposition, the contribution of the Bering Strait throughflow is determined as ~0.02 PW (1 PW=10 15 W) under the modern climate, and zero under the LGM climate because the closed Bering Strait blocked interbasin throughflows. The contribution of the Bering Strait throughflow to OMHT is rather small, consistent with previous studies. However, comparisons of OMHT under modern and LGM climate conditions indicate the mean absolute changes are typically 0.05 and 0.20 PW in the North Atlantic and North Pacific, respectively. Thus, the contribution of the Bering Strait throughflow should not be ignored when comparing OMHT under different climate conditions.


oceanic meridional heat transport (OMHT) Bering Strait throughflow Last Glacial Maximum (LGM) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the Earth System Grid Federation and the MARGO group for sharing their data with the public. We thank YANG Haijun, LI Qing, and WANG Kun from Beijing University for their help with thecalculations of heat transport. We also thank two anonymous reviewers, LI Ziguang, GUO Yongqing, and ZHANG Cong for their valuable advice. We also thank Liwen Bianji, Edanz Group China (www., for editing the English text of a draft of this manuscript.


  1. Bard E. 2002. Climate shock: abrupt changes over millennial time scales. Physics Today, 55 (12): 32–38.CrossRefGoogle Scholar
  2. Batchelor G K. 1967. An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge, Britain. 658p.Google Scholar
  3. Briegleb B P, Bitz C M, Hunke E C, Lipscomb W H, Holland M, Schramm J L, Moritz R E. 2004. Scientific Description of the Sea Ice Component in the Community Climate System Model, Version Three. Climate Andglobal Dynamics Division, Jhr National Center for Atmospheric Research, Boulder, Colorado, USA.Google Scholar
  4. Bryan K. 1962. Measurements of meridional heat transport by ocean currents. Journal of Geophysical Research, 67 (9): 3 403–3 414.CrossRefGoogle Scholar
  5. Bryden H L, Imawaki S. 2001. Ocean heat transport. International Geophysics, 77: 455–474.CrossRefGoogle Scholar
  6. Collins W D, Bitz C M, Blackmon M L, Bonan G B, Bretherton C S, Carton J A, Chang P, Doney S C, Hack J J, Henderson T B, Kiehl J T, Large W G, McKenna D S, Santer B D, Smith R D. 2006. The community climate system model version 3 (CCSM3). Journal of Climate, 19 (11): 2 122–2 143.CrossRefGoogle Scholar
  7. Czaja A, Marshall J. 2006. The partitioning of poleward heat transport between the atmosphere and ocean. Journal of the Atmospheric Sciences, 63 (5): 1 498–1 511.CrossRefGoogle Scholar
  8. Dickinson R E, Oleson K W, Bonan G, Hoffman F, Thornton P, Vertenstein M, Yang Z L, Zeng X B. 2006. The community land model and its climate statistics as a component of the community climate system model. Journal of Climate, 19 (11): 2 302–2 324.CrossRefGoogle Scholar
  9. Fasullo J T, Trenberth K E. 2008. The annual cycle of the energy budget. Part II: meridional structures and poleward transports. Journal of Climate, 21 (10): 2 313–2 325.Google Scholar
  10. Ferrari R, Ferreira D. 2011. What processes drive the ocean heat transport? Ocean Modelling, 38 (3–4): 171–186.CrossRefGoogle Scholar
  11. Freeman E, Skinner L C, Tisserand A, Dokken T, Timmermann A, Menviel L, Friedrich T. 2015. An Atlantic–Pacific ventilation seesaw across the last deglaciation. Earth and Planetary Science Letters, 424: 237–244.CrossRefGoogle Scholar
  12. Ganachaud A, Wunsch C. 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408 (6811): 453–457.CrossRefGoogle Scholar
  13. Gill A E. 1982. Atmosphere–Ocean Dynamics. Academic Press, New York, USA. 662p.Google Scholar
  14. Gu D F, Philander S G H. 1997. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275 (5301): 805–807.CrossRefGoogle Scholar
  15. Harington C R. 2005. The eastern limit of Beringia: mammoth remains from banks and Melville islands, northwest territories. Arctic Institute of North America, 58 (4): 361–369.Google Scholar
  16. Hatzianastassiou N, Matsoukas C, Hatzidimitriou D, Pavlakis C, Drakakis M, Vardavas I. 2004. Ten year radiation budget of the earth: 1984–93. International Journal of Climatology, 24 (14): 1 785–1 802.CrossRefGoogle Scholar
  17. Hazeleger W, Seager R, Cane M A, Naik N H. 2004. How can tropical Pacific Ocean heat transport vary? Journal of Physical Oceanography, 34 (1): 320–333.CrossRefGoogle Scholar
  18. Hu A X, Meehl G A, Han W Q, Abe–Ouchi A, Morrill C, Okazaki Y, Chikamoto M O. 2012a. The Pacific–Atlantic seesaw and the Bering Strait. Geophysical Research Letters, 39 (3): L03702.CrossRefGoogle Scholar
  19. Hu A X, Meehl G A, Han W Q, Otto–Bliestner B, Abe–Ouchi A, Rosenbloom N. 2015. Effects of the Bering Strait closure on AMOC and global climate under different background climates. Progress in Oceanography, 132: 174–196.CrossRefGoogle Scholar
  20. Hu A X, Meehl G A, Han W Q, Timmermann A, Otto–Bliesner B, Liu Z Y, Washington W M, Large W, Abe–Ouchi A, Kimoto M, Lambeck K, Wu B Y. 2012b. Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability. Proceedings of the National Academy of Sciences of the United States of America, 109 (17): 6 417–6 422.CrossRefGoogle Scholar
  21. Hu A X, Meehl G A, Han W Q, Yin J J. 2011. Effect of the potential melting of the Greenland Ice Sheet on the Meridional Overturning Circulation and global climate in the future. Deep Sea Research Part II: Topical Studies in Oceanography, 58 (17–18): 1 914–1 926.CrossRefGoogle Scholar
  22. Hu A X, Meehl G A, Han W Q. 2007. Role of the Bering Strait in the thermohaline circulation and abrupt climate change. Geophysical Research Letters, 34 (5): L05704.CrossRefGoogle Scholar
  23. Hu A X, Meehl G A. 2005. Bering Strait throughflow and the thermohaline circulation. Geophysical Research Letters, 32 (24): L24610.CrossRefGoogle Scholar
  24. IOC, SCOR, IAPSO. 2010. The International Thermodynamic Equation of Seawater—2010: Calculation and Use of Thermodynamic Properties. Manuals and Guides No. 56, Intergovernmental Oceanographic Commission, Paris. p.196.Google Scholar
  25. Lippold J, Luo Y M, Francois R, Allen S E, Gherardi J, Pichat S, Hickey B, Schulz H. 2012. Strength and geometry of the glacial Atlantic meridional overturning circulation. Nature Geoscience, 5 (11): 813–816.CrossRefGoogle Scholar
  26. Lynch–Stieglitz J, Adkins J F, Curry W B, Dokken T, Hall I R, Herguera J C, Hirschi J J M, Ivanova E V, Kissel C, Marchal O, Marchitto T M, McCave I N, McManus J F, Mulitza S, Ninnemann U, Peeters F, Yu E F, Zahn R. 2007. Atlantic meridional overturning circulation during the Last Glacial Maximum. Science, 316 (5821): 66–69.CrossRefGoogle Scholar
  27. MacDonald A M, Baringer M O. 2013. Ocean heat transport. International Geophysics, 103: 759–785.CrossRefGoogle Scholar
  28. MARGO Project Members. 2009. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nature Geoscience, 2 (2): 127–132.CrossRefGoogle Scholar
  29. McCreary Jr J P, Lu P. 1994. Interaction between the subtropical and equatorial ocean circulations: the subtropical cell. Journal of Physical Oceanography, 24 (2): 466–497.CrossRefGoogle Scholar
  30. McDougall T J. 2003. Potential enthalpy: a conservative oceanic variable for evaluating heat content and heat fluxes. Journal of Physical Oceanography, 33 (5): 945–963.CrossRefGoogle Scholar
  31. Okumura Y M, Deser C, Hu A X, Timmermann A, Xie S P. 2009. North Pacific climate response tofreshwater forcing in the subarctic North Atlantic: oceanic and atmospheric pathways. Journal of Climate, 22 (6): 1 424–1 445.CrossRefGoogle Scholar
  32. Olbers D, Willebrand J, Eden C. 2012. Ocean Dynamics. Springer, Berlin, Germany. 703p.CrossRefGoogle Scholar
  33. Otto–Bliesner B L, Brady E C, Clauzet G, Tomas R, Levis S, Kothavala Z. 2006. Last glacial maximum and Holocene climate in CCSM3. Journal of Climate, 19 (11): 2 526–2 544.CrossRefGoogle Scholar
  34. Otto–Bliesner B L, Brady E C. 2010. The sensitivity of the climate response to the magnitude and location of freshwater forcing: last glacial maximum experiments. Quaternary Science Reviews, 29 (1–2): 56–73.CrossRefGoogle Scholar
  35. Peltier W R. 2004. Global glacial isostasy and the surface of the ice–age earth: the ICE–5G (VM2) model and GRACE. Annual Review of Earth and Planetary Sciences, 32 (1): 111–149.CrossRefGoogle Scholar
  36. Pelto B M. 2014. Sedimentological, Geochemical and Isotopic Evidence for the Establishment of Modern Circulation Through the Bering Strait and Depositional Environment History of the Bering and Chukchi Seas During the Last Deglaciation. University of Massachusetts Amherst, Massachusetts, USA.Google Scholar
  37. Saenko O A, Schmittner A, Weaver A J. 2004. The atlantic–pacific seesaw. Journal of Climate, 17 (11): 2 33–2 38.CrossRefGoogle Scholar
  38. Sandal C, Nof D. 2008. The collapse of the Bering Strait ice dam and the abrupt temperature rise in the beginning of the holocene. Journal of Physical Oceanography, 38 (9): 1 979–1 991.CrossRefGoogle Scholar
  39. Saunders P M. 1995. The Bernoulli function and flux of energy in the ocean. Journal of Geophysical Research, 100 (C11): 22 647–22 648.Google Scholar
  40. Serreze M C, Barrett A P, Slater A G, Woodgate R A, Aagaard K, Lammers R B, Steele M, Moritz R, Meredith M, Lee C M. 2006. The large–scale freshwater cycle of the Arctic. Journal of Geophysical Research, 111 (C11): C11010.CrossRefGoogle Scholar
  41. Smith R, Gent P. 2002. Reference Manual for the Parallel Ocean Program (POP) Ocean Component of the Community Climate System Model (CCSM2.0 and 3.0). Technical Report LA–UR–02–2484. Los Alamos National Laboratory, Los Alamos, NM.Google Scholar
  42. Sprintall J, Wijffels S E, Molcard R, Jaya I. 2009. Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006. Journal of Geophysical Research, 114 (C7): C07001.Google Scholar
  43. Stammer D, Wunsch C, Giering R, Eckert C, Heimbach P, Marotzke J, Adcroft A, Hill C N, Marshall J. 2003. Volume, heat, and freshwater transports of the global ocean circulation 1993–2000, estimated from a general circulation model constrained by World Ocean Circulation Experiment (WOCE) data. Journal of Geophysical Research, 108 (C1): 3007.CrossRefGoogle Scholar
  44. Starr V P. 1951. Applications of energy principles to the general circulation. In: Byers H R, Landsberg H E, Wexler H, Haurwitz B, Spilhaus A F, Willett H C, Houghton H G eds. Compendium of Meteorology. American Meteorological Society, Boston, USA. p.568–574.Google Scholar
  45. Talley L D. 2003. Shallow, intermediate, and deep overturning components of the global heat budget. Journal of Physical Oceanography, 33 (3): 530–560.CrossRefGoogle Scholar
  46. Trenberth K E, Caron J M. 2001. Estimates of meridional atmosphere and ocean heat transports. Journal of Climate, 14 (16): 3 433–3 443.CrossRefGoogle Scholar
  47. Trenberth K E, Solomon A. 1994. The global heat balance: heat transports in the atmosphere and ocean. Climate Dynamics, 10 (3): 107–134.CrossRefGoogle Scholar
  48. Warren B A. 1999. Approximating the energy transport across oceanic sections. Journal of Geophysical Research, 104 (C4): 7 915–7 919.Google Scholar
  49. Warren B A. 2006. The first law of thermodynamics in a salty ocean. Progress in Oceanography, 70 (2–4): 149–167.CrossRefGoogle Scholar
  50. Woodgate R A, Aagaard K, Weingartner T J. 2005. A year in the physical oceanography of the Chukchi Sea: moored measurements from autumn 1990–1991. Deep Sea Research Part II: Topical Studies in Oceanography, 52 (24–26): 3 116–3 149.Google Scholar
  51. Woodgate R A, Aagaard K. 2005. Revising the Bering Strait freshwater flux into the Arctic Ocean. Geophysical Research Letters, 32 (2): L02602.CrossRefGoogle Scholar
  52. Woodgate R A, Weingartner T J, Lindsay R. 2012. Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column. Geophysical Research Letters, 39 (24): L24603.CrossRefGoogle Scholar
  53. Woodgate R A, Weingartner T, Lindsay R. 2010. The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea–ice retreat. Geophysical Research Letters, 37 (1): L01602.CrossRefGoogle Scholar
  54. Yang H J, Li Q, Wang K, Sun Y, Sun D X. 2015a. Decomposing the meridional heat transport in the climate system. Climate Dynamics, 44 (9–10): 2 751–2 768.Google Scholar
  55. Yang H J, Zhao Y Y, Liu Z Y, Li Q, He F, Zhang Q. 2015b. Heat transport compensation in atmosphere and ocean over the past 22,000 Years. Scientific Reports, 5: 16 661.CrossRefGoogle Scholar
  56. Zheng Y X, Giese B S. 2009. Ocean heat transport in simple ocean data assimilation: structure and mechanisms. Journal of Geophysical Research, 114 (C11): C11009.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physical Oceanography Laboratory/CIMSTOcean University of China and Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations