Expression profiles of sex–related genes in gonads of genetic male Takifugu rubripes after 17β–estradiol immersion

  • Peng Hu
  • Bin Liu
  • Qian Ma
  • Shufang Liu
  • Xinfu LiuEmail author
  • Zhimeng Zhuang


Estradiol treatment during early life stages of tiger puffer Takifugu rubripes induces feminization in genetic males. However, the ovaries in genetic males may revert to testes once estradiol treatment is halted. Therefore studies should investigate molecular mechanisms underlying ovary–to–testis recovery in genetic males after treatment. In the present study, tiger puffer were exposed to 10, and 100 μg/L 17β–estradiol (E2 ) from 15 to 100 days post–hatching (dph), then gonad phenotypes and expression profiles of six sex–related genes (cyp19a, foxl2, dmrt1, amh, sox9a, and sox9b) were characterized after the exposure. Results showed that both 10 and 100 μg/L E2 induced ovarian development in genetic males at 100 dph. However, all ovaries induced by 10 μg/L E2 first developed into intersexual gonads and subsequently reverted to testes after the exposure. As for treatment of 100 μg/L E2, while the rest of the ovaries maintained morphological stability, percentages of intersexual gonads reached 38%–57%, and none were reverted to testes. Increased mRNA levels of cyp19a, foxl2 and sox9b and decreased mRNA levels of dmrt1, amh, and sox9a were observed during the ovarian development in genetic males. While contrary gene expression profiles were detected during ovary–to–testis transformation. The mRNA levels of all the six genes were increased during the development of intersexual gonads. These results indicated that up–regulation of dmrt1, amh and sox9a is associated with initial ovary–to–intersexual transformation, and suppression of foxl2, cyp19a and sox9b is essential for complete ovary–to–testis recovery in genetic males. This research will help to trace the molecular processes underlying gonadal transformation in teleosts.


Takifugu rubripes ovary–to–testis recovery sex–related genes mRNA expression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aparicio S, Chapman J, Stupka E, Putnam N, Chia J M, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, Gelpke M D, Roach J, Oh T, Ho I Y, Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith S F, Clark M S, Edwards Y J, Doggett N, Zharkikh A, Tavtigian S V, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan Y H, Elgar G, Hawkins T, Venkatesh B, Rokhsar D, Brenner S. 2002. Whole–genome shotgun assembly and analysis of the genome of Fugu rubripes. Science, 297(5585): 1 301–1 310.Google Scholar
  2. Baroiller J F, D’Cotta H. 2001. Environment and sex determination in farmed fish. Comparative Biochemistry and Physiology C: Toxicology & Pharmacology, 130(4): 399–409.Google Scholar
  3. Baumann L, Knörr S, Keiter S, Rehberger K, Volz S, Schiller V, Fenske M, Holbech H, Segner H, Braunbeck T. 2014. Reversibility of endocrine disruption in zebrafish (Danio rerio) after discontinued exposure to the estrogen 17α–ethinylestradiol. Toxicology and Applied Pharmacology, 278(3): 230–237.Google Scholar
  4. Bhandari R K, Komuro H, Nakamura S, Higa M, Nakamura M. 2003. Gonadal restructuring and correlative steroid hormone profiles during natural sex change in protogynous honeycomb grouper (Epinephelus merra). Zoological Science, 20(11): 1 399–1 404.Google Scholar
  5. Blázquez M, González A, Papadaki M, Mylonas C, Piferrer F. 2008. Sex–related changes in estrogen receptors and aromatase gene expression and enzymatic activity during early development and sex differentiation in the European sea bass (Dicentrarchus labrax). General and Comparative Endocrinology, 158(1): 95–101.Google Scholar
  6. Chiang E F L, Pai C I, Wyatt M, Yan Y L, Postlethwait J, Chung B C. 2001. Two Sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. Developmental Biology, 231(1): 149–163.Google Scholar
  7. Fleming N I, Knower K C, Lazarus K A, Fuller P J, Simpson E R, Clyne C D. 2010. Aromatase is a direct target of FOXL2: C134W in granulosa cell tumors via a single highly conserved binding site in the ovarian specific promoter. PLoS One, 5 (12): e14389.Google Scholar
  8. Georges A, Auguste A, Bessière L, Vanet A, Todeschini A L, Veitia R A. 2013. FOXL2: a central transcription factor of the ovary. Journal of Molecular Endocrinology, 52 (1): R17–R33.Google Scholar
  9. Guiguen Y, Baroiller J F, Ricordell M, Iseki K, Mcmeel O M, Martin S A M, Fostier A. 1999. Involvement of estrogens in the process of sex differentiation in two fish species: the rainbow trout (Oncorhynchus mykiss) and a tilapia (Oreochromis niloticus). Molecular Reproduction and Development, 54(2): 154–162.Google Scholar
  10. Guiguen Y, Fostier A, Piferrer F, Chang C F. 2010. Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish. General and Comparative Endocrinology, 165(3): 352–366.Google Scholar
  11. Horiguchi R, Nozu R, Hirai T, Kobayashi Y, Nakamura M. 2018. Expression patterns of sex differentiation–related genes during gonadal sex change in the protogynous wrasse, Halichoeres trimaculatus. General and Comparative Endocrinology, 257: 67–73.Google Scholar
  12. Hu P, Liu B, Meng Z, Liu X F, Jia Y D, Yang Z, Lei J L. 2017. Recovery of gonadal development in tiger puffer Takifugu rubripes after exposure to 17β–estradiol during early life stages. Chinese Journal of Oceanology and Limnology, 35(5): 613–623.Google Scholar
  13. Hu Q, Guo W, Gao Y, Tang R, Li D P. 2015. Molecular cloning and characterization of amh and dax1 genes and their expression during sex inversion in rice–field eel Monopterus albus. Scientific Reports, 5: 16 667.Google Scholar
  14. Hu Q, Guo W, Gao Y, Tang R, Li D P. 2014. Molecular cloning and analysis of gonadal expression of Foxl2 in the ricefield eel Monopterus albus. Scientific Reports, 4: 6 884.Google Scholar
  15. Ijiri S, Kaneko H, Kobayashi T, Wang D S, Sakai F, Paul–Prasanth B, Nakamura M, Nagahama Y. 2008. Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus. Biology of Reproduction, 78(2): 333–341.Google Scholar
  16. Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, Fujita M, Suetake H, Suzuki S, Hosoya S, Tohari S, Brenner S, Miyadai T, Venkatesh B, Suzuki Y, Kikuchi K. 2012. A trans–species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (Fugu). PLoS Genetics, 8 (7): e1002798.Google Scholar
  17. Kim Y, Muroki H, Yamamoto K, Deng J M, Behringer R R, Nakamura T, Akiyama H. 2011. Generation of transgenic mice for conditional overexpression of Sox9. Journal of Bone and Mineral Metabolism, 29(1): 123–129.Google Scholar
  18. Kobayashi T, Matsuda M, Kajiura–Kobayshi H, Suzuki A, Saito N, Nakamoto M, Shibata N, Nagahama Y. 2004. Two DM domain genes, DMY and DMRT1, involved in testicular differentiation and development in the medaka, Oryzias latipes. Developmental Dynamics, 231(3): 518–526.Google Scholar
  19. Kokokiris L, Fostire A, Athanassopoulou F, Petridis D, Kentouri M. 2006. Gonadal changes and blood sex steroids levels during natural sex inversion in the protogynous Mediterranean red porgy, Pagrus pagrus (Teleostei: Sparidae). General and Comparative Endocrinology, 149(1): 42–48.Google Scholar
  20. Lambeth L S, Morris K, Ayers K L, Wise T G, O’Neil T, Wilson S, Cao Y, Sinclair A H, Cutting A D, Doran T J, Smith C A. 2016. Overexpression of anti–Müllerian hormone disrupts gonadal sex differentiation, blocks sex hormone synthesis, and supports cell autonomous sex development in the chicken. Endocrinology, 157(3): 1 258–1 275.Google Scholar
  21. Lambeth L S, Raymond C S, Roeszler K N, Kuroiwa A, Nakata T, Zarkower D, Smith C A. 2014. Over–expression of DMRT1 induces the male pathway in embryonic chicken gonads. Developmental Biology, 389(2): 160–172.Google Scholar
  22. Lau E S, Zhang Z W, Qin M M, Ge W. 2016. Knockout of zebrafish ovarian aromatase gene (cyp19a1a) by TALEN and CRISPR/Cas9 leads to all–male offspring due to failed ovarian differentiation. Scientific Reports, 6: 37 357.Google Scholar
  23. Lee K H, Yamaguchi A, Rashid H, Kadomura K, Yasumoto S, Matsuyama M. 2009. Estradiol–17β treatment induces intersexual gonadal development in the pufferfish, Takifugu rubripes. Zoological Science, 26(9): 639–645.Google Scholar
  24. Li M H, Sun Y L, Zhao J, Shi H J, Zeng S, Ye K, Jiang D N, Zhou L Y, Sun L N, Tao W J, Nagahama Y, Kocher T D, Wang D S. 2015. A tandem duplicate of anti–Müllerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile tilapia, Oreochromis niloticus. PLoS Genet ics, 11 (11): e1005678.Google Scholar
  25. Li M H, Yang H H, Li M R, Sun Y L, Jiang X L, Xie Q P, Wang T R, Shi H J, Sun L N, Zhou L Y, Wang D S. 2013. Antagonistic roles of Dmrt1 and Foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs. Endocrinology, 154(12): 4 814–4 825.Google Scholar
  26. Liu H Q, Guan B, Xu J, Hou C C, Tian H, Chen H X. 2013. Genetic manipulation of sex ratio for the large–scale breeding of YY super–male and XY all–male yellow catfish (Pelteobagrus fulvidraco (Richardson)). Marine Biotechnology, 15(3): 321–328.Google Scholar
  27. Liu J F, Guiguen Y, Liu S J. 2009. Aromatase (P450arom) and 11β–hydroxylase (P45011β) genes are differentially expressed during the sex change process of the protogynous rice field eel, monopterus albus. Fish Physiology and Biochemistry, 35(3): 511–518.Google Scholar
  28. Maack G, Segner H. 2003. Morphological development of the gonads in zebrafish. Journal of Fish Biology, 62(4): 895–906.Google Scholar
  29. Mair G C, Abucay J S, Abella T A, Beardmore J A, Skibinski D O F. 1997. Genetic manipulation of sex ratio for the large scale production of all–male tilapia Oreochromis niloticus. Canadian Journal of Fisheries and Aquatic Sciences, 54(2): 396–404.Google Scholar
  30. Masuyama H, Yamada M, Kamei Y, Fujiwara–Ishikawa T, Todo T, Nagahama Y, Matsuda M. 2012. Dmrt1 mutation causes a male–to–female sex reversal after the sex determination by Dmy in the medaka. Chromosome Research, 20(1): 163–176.Google Scholar
  31. Nakamura S, Watakabe I, Nishimura T, Picard J Y, Toyoda A, Taniguchi Y, di Clemente N, Tanaka M. 2012. Hyperproliferation of mitotically active germ cells due to defective anti–Müllerian hormone signaling mediates sex reversal in medaka. Development, 139(13): 2 283–2 287.Google Scholar
  32. Nozu R, Horiguchi R, Kobayashi Y, Nakamura M. 2015. Expression profile of doublesex/male abnormal–3–related transcription factor–1 during gonadal sex change in the protogynous wrasse, Halichoeres trimaculatus. Molecular Reproduction and Development, 82(11): 859–866.Google Scholar
  33. Pan Q W, Anderson J, Bertho S, Herpin A, Wilson C, Postlethwait J H, Schartl M, Guiguen Y. 2016. Vertebrate sex–determining genes play musical chairs. Comptes Rendus Biologies, 339: 258–262.Google Scholar
  34. Pfennig F, Standke A, Gutzeit H O. 2015. The role of Amh signaling in teleost fish–Multiple functions not restricted to the gonads. General and Comparative Endocrinology, 223: 87–107.Google Scholar
  35. Piferrer F, Blázquez M. 2005. Aromatase distribution and regulation in fish. Fish Physiology and Biochemistry, 31 (2–3): 215–226.Google Scholar
  36. Rutaisire J, Levavi–Sivan B, Nyatia N, Booth A. 2008. Juvenile intersexuality in the cyprinid fish Labeo victorianus. Cybium: International Journal of Ichthyology, 32 (2): 232.Google Scholar
  37. Sekido R, Lovell–Badge R. 2009. Sex determination and SRY: down to a wink and a nudge? Trends in Genetics, 25(1): 19–29.Google Scholar
  38. She Z Y, Yang W X. 2017. Sry and SoxE genes: How they participate in mammalian sex determination and gonadal development? Seminars in Cell and Developmental Biology, 63: 13–22.Google Scholar
  39. Shen X Y, Cui J Z, Yang G P, Gong Q L, Gu Q Q. 2007. Expression detection of DMRTs and two sox9 genes in Takifugu rubripes (Tetraodontidae, Vertebrata). Journal of Ocean University of China, 6(2): 182–186.Google Scholar
  40. Shiraishi E, Yoshinaga N, Miura T, Yokoi H, Wakamatsu Y, Abe S, Kitano T. 2008. Müllerian inhibiting substance is required for germ cell proliferation during early gonadal differentiation in medaka (Oryzias latipes). Endocrinology, 149(4): 1 813–1 819.Google Scholar
  41. Skaar K S, Nóbrega R H, Magaraki A, Olsen L C, Schulz R W, Male R. 2011. Proteolytically activated, recombinant anti–Müllerian hormone inhibits androgen secretion, proliferation, and differentiation of Spermatogonia in adult zebrafish testis organ cultures. Endocrinology, 152(9): 3 527–3 540.Google Scholar
  42. Strüssmann C A, Nakamura M. 2002. Morphology, endocrinology, and environmental modulation of gonadal sex differentiation in teleost fish. Fish Physiology and Biochemistry, 26(1): 13–29.Google Scholar
  43. Sun D, Zhang Y, Wang C, Hua X, Zhang X A, Yan J. 2013. Sox9–related signaling controls zebrafish juvenile ovarytestis transformation. Cell Death and Disease, 4 (11): e930.Google Scholar
  44. Suzuki A, Nakamoto M, Kato Y, Shibata N. 2005. Effects of estradiol–17β on germ cell proliferation and DMY expression during early sexual differentiation of the medaka Oryzias latipes. Zoological Science, 22(7): 791–796.Google Scholar
  45. Tong S K, Hsu H J, Chung B C. 2010. Zebrafish monosex population reveals female dominance in sex determination and earliest events of gonad differentiation. Developmental Biology, 344(2): 849–856.Google Scholar
  46. Uno T, Ishizuka M, Itakura T. 2012. Cytochrome P450 (CYP) in fish. Environmental Toxicology and Pharmacology, 34(1): 1–13.Google Scholar
  47. Vizziano–Cantonnet D, Baron D, Mahè S, Cauty C, Fostier A, Guiguen Y. 2008. Estrogen treatment up–regulates female genes but does not suppress all early testicular markers during rainbow trout male–to–female gonadal transdifferentiation. Journal of Molecular Endocrinology, 41(5): 277–288.Google Scholar
  48. Vizziano D, Randuineau G, Baron D, Gauty C, Guiguen Y. 2007. Characterization of early molecular sex differentiation in rainbow trout, Oncorhynchus mykiss. Developmental Dynamics, 236(8): 2 198–2 206.Google Scholar
  49. Wang D S, Kobayashi T, Zhou L Y, Paul–Prasanth B, Ijiri S, Sakai F, Okubo K, Morohashi K, Nagahama Y. 2007. Foxl2 up–regulates aromatase gene transcription in a female–specific manner by binding to the promoter as well as interacting with Ad4 binding protein/steroidogenic factor. Molecular Endocrinology, 21(3): 712–725.Google Scholar
  50. Wang D S, Zhao L Y, Kobayashi T, Matsuda M, Shibata Y, Sakai F, Nagahama Y. 2010. Doublesex– and Mab–3–related transcription factor–1 repression of aromatase transcription, a possible mechanism favoring the male pathway in tilapia. Endocrinology, 151(3): 1 331–1 340.Google Scholar
  51. Webster K A, Schach U, Ordaz A, Steinfeld J S, Draper B W, Siegfried K R. 2017. Dmrt1 is necessary for male sexual development in zebrafish. Developmental Biology, 422(1): 33–46.Google Scholar
  52. Wu G C, Li H W, Luo J W, Chen C, Chang C F. 2015. The potential role of Amh to prevent ectopic female development in testicular tissue of the protandrous black porgy, Acanthopagrus schlegelii. Biology of Reproduction, 92 (6): 158.Google Scholar
  53. Wu G C, Tomy S, Lee M F, Lee Y H, Yueh W S, Lin C J, Lau E L, Chang C F. 2010. Sex differentiation and sex change in the protandrous black porgy, Acanthopagrus schlegeli. General and Comparative Endocrinology, 167(3): 417–421.Google Scholar
  54. Wu G C, Li H W, Tey W G, Lin C J, Chang C F. 2017. Expression profile of amh /Amh during bi–directional sex change in the protogynous orange–spotted grouper Epinephelus coioides. PLoS One, 12 (10): e0185864.Google Scholar
  55. Xia W, Zhou L, Yao B, Li C J, Gui J F. 2007. Differential and spermatogenic cell–specific expression of DMRT1 during sex reversal in protogynous hermaphroditic groupers. Molecular and Cellular Endocrinology, 263 (1–2): 156–172.Google Scholar
  56. Yang Y J, Wang Y, Li Z, Zhou L, Gui J F. 2017. Sequential, divergent and cooperative requirements of foxl2a and foxl2b in ovary development and maintenance of zebrafish. Genetics, 205(4): 1 551–1 572.Google Scholar
  57. Yano A, Guyomard R, Nicol B, Jouanno E, Quillet E, Klopp C, Cabau C, Bouchez O, Fostier A, Guiguen Y. 2012. An immune–related gene evolved into the master sexdetermining gene in rainbow trout, Oncorhynchus mykiss. Current Biology, 22(15): 1 423–1 428.Google Scholar
  58. Yamaguchi A, Lee K H, Fujimoto H, Kadomura K, Yasumoto S, Matsuyama M. 2006. Expression of the DMRT gene and its roles in early gonadal development of the Japanese pufferfish Takifugu rubripes. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 1(1): 59–68.Google Scholar
  59. Zhang X B, Li M R, Ma H, Liu X Y, Shi H J, Li M H, Wang D S. 2017. Mutation of foxl2 or cyp19a1a results in female to male sex reversal in XX Nile tilapia. Endocrinology, 158(8): 2 634–2 647.Google Scholar
  60. Zhao L, Svingen T, Ng E T, Koopman P. 2015. Female–to–male sex reversal in mice caused by transgenic overexpression of Dmrt1. Development, 142(6): 1 083–1 088.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Peng Hu
    • 1
    • 2
  • Bin Liu
    • 1
  • Qian Ma
    • 1
    • 2
  • Shufang Liu
    • 1
    • 2
  • Xinfu Liu
    • 1
    Email author
  • Zhimeng Zhuang
    • 1
    • 2
  1. 1.Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
  2. 2.Function Laboratory for Marine Fisheries Science and Food Production ProcessesQingdao National Laboratory for Marine Science and Technology & Function Laboratory for Marine Biology and BiotechnologyQingdaoChina

Personalised recommendations