Journal of Oceanology and Limnology

, Volume 37, Issue 2, pp 525–534 | Cite as

Responses of marine-derived Trichoderma fungi to seawater and their potential antagonistic behaviour

  • Yinping Song
  • Fengping Miao
  • Xianghong Liu
  • Naiyun JiEmail author


To explore the metabolic responses of marine-derived Trichoderma fungi to environmental stresses, the survivability, metabolism, and antagonism of ten marine isolates have been examined. Their survival in both freshwater and seawater indicates them to be facultative marine fungi, but they are more adaptable to marine environment. Most of them feature strain-specific and positive metabolic responses to seawater, which also usually result in the higher proportions of heteroatom-bearing and unsaturated units in mycelial constituents. Seawater factors can promote many strains to produce bioactive metabolites, including plant pathogen- and marine phytoplankton-inhibitory and marine animal-toxic ones, but the effects of NaCl are often weak or negative. The inhibition of marine phytoplankton corresponds to the intracellular accumulation of heteroatom-bearing and unsaturated units under seawater condition, and the varied toxicities to marine animals further signify the divergences of lipophilic exudates under different conditions. The results may contribute to further understanding and mining the structural diversity and biological activity of secondary metabolites from marine-derived Trichoderma fungi.


Trichoderma fungus metabolic response seawater antagonistic potential 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blunt J W, Carroll A R, Copp B R, Davis R A, Keyzers R A, Prinsep M R. 2018. Marine natural products. Nat. Prod. Rep., 35 (1): 8–53.Google Scholar
  2. Bugni T S, Ireland C M. 2004. Marine–derived fungi: a chemically and biologically diverse group of microorganisms. Nat. Prod. Rep., 21 (1): 143–163.Google Scholar
  3. Cacciola S O, Puglisi I, Faedda R, Sanzaro V, Pane A, Lo Piero A R, Evoli M, Petrone G. 2015. Cadmium induces cadmium–tolerant gene expression in the filamentous fungus Trichoderma harzianum. Mol. Biol. Rep., 42 (11): 1 559–1 570.Google Scholar
  4. Chen C Y, Imamura N, Nishijima M, Adachi K, Sakai M, Sano H. 1996. Halymecins, new antimicroalgal substances produced by fungi isolated from marine algae. J. Antibiot., 49 (10): 998–1 005.Google Scholar
  5. Chen L, Zhong P, Pan J R, Zhou K J, Huang K, Fang Z X, Zhang Q Q. 2013. Asperelines G and H, two new peptaibols from the marine–derived fungus Trichoderma asperellum. Heterocycles, 87 (3): 645–655.Google Scholar
  6. Garo E, Starks C M, Jensen P R, Fenical W, Lobkovsky E, Clardy J. 2003. Trichodermamides A and B, cytotoxic modified dipeptides from the marine–derived fungus Trichoderma virens. J. Nat. Prod., 66 (3): 423–426.Google Scholar
  7. Ghisalberti E L, Sivasithamparam K. 1991. Antifungal antibiotics produced by Trichoderma spp. Soil Biol. Biochem., 23 (11): 1 011–1 020.Google Scholar
  8. Harman G E, Howell C R, Viterbo A, Chet I, Lorito M. 2004. Trichoderma species—opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol., 2 (1): 43–56.Google Scholar
  9. Ji N Y, Wang B G. 2016. Mycochemistry of marine algicolous fungi. Fungal Divers., 80 (1): 301–342.Google Scholar
  10. Keswani C, Mishra S, Sarma B K, Singh S P, Singh H B. 2014. Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl. Microbiol. Biotechnol., 98 (2): 533–544.Google Scholar
  11. Kubanek J, Jensen P R, Keifer P A, Sullards M C, Collins D O, Fenical W. 2003. Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc. Natl. Acad. Sci. USA, 100 (12): 6 916–6 921.Google Scholar
  12. Lejeune R, Nielsen J, Baron G V. 1995. Influence of pH on the morphology of Trichoderma reeseiqm 9414 in submerged culture. Biotechnol. Lett., 17 (3): 341–344.Google Scholar
  13. Liu B N, Qiao C S, Jia S R. 2006. Studies on the method for the measurement of fungal biomass. Pharm. Biotechnol., 13 (1): 40–44. (in Chinese with English abstract)Google Scholar
  14. Lu D D, Goebel J, Qi Y Z, Zou J Z, Han X T, Gao Y H, Li Y G. 2005. Morphological and genetic study of Prorocentrum donghaiense Lu from the East China Sea, and comparison with some related Prorocentrum species. Harmful Algae, 4 (3): 493–505.Google Scholar
  15. Masuma R, Yamaguchi Y, Noumi M, Omura S, Namikoshi M. 2001. Effect of sea water concentration on hyphal growth and antimicrobial metabolite production in marine fungi. Mycoscience, 42 (5): 455–459.Google Scholar
  16. Miao F P, Liang X R, Yin X L, Wang G, Ji N Y. 2012. Absolute configurations of unique harziane deterpenes from Trichoderma species. Org. Lett., 14 (15): 3 815–3 817.Google Scholar
  17. Nan C R, Dong S L. 2004. Progress on the competition between macroalgae and microalgae. Mar. Sci., 28 (11): 64–66. (in Chinese with English abstract)Google Scholar
  18. Papavizas G C. 1985. Trichoderma and Gliocladium: biology, ecology, and potential for biocontrol. Ann. Rev. Phytopathol., 23 (1): 23–54.Google Scholar
  19. Puglisi I, Faedda R, Sanzaro V, Lo Piero A R, Petrone G, Cacciola S O. 2012. Identification of differentially expressed genes in response to mercury I and II stress in Trichoderma harzianum. Gene, 506 (2): 325–330.Google Scholar
  20. Reino J L, Guerrero R F, Hernández–Galán R, Collado I G. 2008. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem. Rev., 7 (1): 89–123.Google Scholar
  21. Ren J W, Xue C M, Tian L, Xu M J, Chen J, Deng Z W, Proksch P, Lin W H. 2009. Asperelines A–F, peptaibols from the marine–derived fungus Trichoderma asperellum. J. Nat. Prod., 72 (6): 1 036–1 044.Google Scholar
  22. Schulz B, Sucker J, Aust H J, Krohn K, Ludewig K, Jones P G, Döring D. 1995. Biologically active secondary metabolites of endophytic Pezicula species. Mycol. Res., 99 (8): 1 007–1 015.Google Scholar
  23. Solis P N, Wright C W, Anderson M M, Gupta M P, Phillipson J D. 1993. A microwell cytotoxicity assay using Artemia salina (brine shrimp). Planta Med., 59 (3): 250–252.Google Scholar
  24. Song F H, Dai H Q, Tong Y J, Ren B, Chen C X, Sun N, Liu X Y, Bian J, Liu M, Gao H, Liu H W, Chen X P, Zhang L X. 2010. Trichodermaketones A–D and 7–O–methylkoninginin D from the marine fungus Trichoderma koningii. J. Nat. Prod., 73 (5): 806–810.Google Scholar
  25. Sun Y, Tian L, Huang J, Ma H Y, Zheng Z, Lv A L, Yasukawa K, Pei Y H. 2008. Trichodermatides A–D, novel polyketides from the marine–derived fungus Trichoderma reesei. Org. Lett., 10 (3): 393–396.Google Scholar
  26. Tarman K, Lindequist U, Wende K, Porzel A, Arnold N, Wessjohann L A. 2011. Isolation of a new natural product and cytotoxic and antimicrobial activities of extracts from fungi of Indonesian marine habitats. Mar. Drugs, 9 (3): 294–306.Google Scholar
  27. Tyrrell J V, Connell L B, Scholin C A. 2002. Monitoring for Heterosigma akashiwo using a sandwich hybridization assay. Harmful Algae, 1 (2): 205–214.Google Scholar
  28. Vinale F, Sivasithamparam K, Ghisalberti E L, Marra R, Woo S L, Lorito M. 2008. Trichoderma–plant–pathogen interactions. Soil Biol. Biochem., 40 (1): 1–10.Google Scholar
  29. Wang S, Li X M, Teuscher F, Diesel A, Ebel R, Proksch P, Wang B G. 2006. Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J. Nat. Prod., 69 (11): 1 622–1 625.Google Scholar
  30. Weindling R. 1932. Trichoderma lignorum as a parasite of other soil fungi. Phytopathology, 22 (10): 837–845.Google Scholar
  31. Weindling R. 1934. Studies on lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctinia solani and other soil fungi. Phytopathology, 24 (11): 1 153–1 179.Google Scholar
  32. Xue Q Z. 1992. Study on population dynamics of Littorina brevicula on rocky shore in Qingdao, China. Oceanol. Limnol. Sin., 23 (4): 438–444. (in Chinese with English abstract)Google Scholar
  33. Yamazaki H, Rotinsulu H, Narita R, Takahashi R, Namikoshi M. 2015. Induced production of halogenated epidithiodiketopiperazines by a marine–derived Trichoderma cf. brevicompactum with sodium halides. J. Nat. Prod., 78 (10): 2 319–2 321.Google Scholar
  34. Yin D C, Deng X, Chet I, Song R Q. 2013. Responses of Trichoderma harzianum T28 under drought and saltalkali stress. J. Anhui Agri. Sci., 41 (30): 11 997–12 000. (in Chinese with English abstract)Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yinping Song
    • 1
    • 2
  • Fengping Miao
    • 1
  • Xianghong Liu
    • 1
  • Naiyun Ji
    • 1
    Email author
  1. 1.Yantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations