Journal of Oceanology and Limnology

, Volume 37, Issue 2, pp 640–650 | Cite as

Transcriptome analysis of kelp Saccharina japonica unveils its weird transcripts and metabolite shift of main components at different sporophyte developmental stages

  • Haiyan Ding
  • Li GuoEmail author
  • Xiaojie Li
  • Guanpin YangEmail author


Saccharina japonica is an economically important cold water brown alga extensively cultivated in China. It is cultivated upside down under a floating rope net with its holdfast and meristematic area facing sunlight and UV irradiation and its blade tip toward dark, and other worse cultivation environmental factors also make S. japonica a face more stresses. In this study, S. japonica transcriptomes corresponding to its four developmental stages were analyzed. In total, 7 800 genes predicted in the genome were transcribed. We found that 1 208 of the 7 800 expressed and 2 697 annotated were virus associating genes. Of 778 differentially expressed genes (DEGs), 372 were annotatable and 209 were virus associating. Such portion of virus associating genes indicated that the S. japonica genome contained a large portion of active virus originating genes. It was found that the transcripts abundance associated with sugar biosynthesis was about 2.13 folds of all the expressed, indicating that the biosyntheses of structural and storage sugars were very important cellular processes. The total abundance of genes involved in the biosynthesis of alginate and laminarin were similar among all developmental stages, however, that of genes involved in the biosynthesis of mannitol increased about 2-folds from mushroom and adult stages to mature and aging stages. This trend explained our observation that the content of alginate was almost constant at different development stages, while that of mannitol increased sharply. In addition, we found that a set of defense and cell recurring genes highly expressed and many of them expressed differentially among stages. On average, the sum abundance of the transcripts of these genes at four stages were 3.40- and 4.96-folds of all the annotated and all the expressed, respectively. This indicated that S. japonica sporophytes persistently respond possible pathogen and environment stresses. The findings are important for timing S. japonica harvest and amending the current cultivation mode.


Saccharina japonica transcriptome developmental stage sugar biosynthesis defense 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschul S F, Madden T L, Schaffer A A, Zhang J H, Zhang Z, Miller W, Lipman D J. 1997. Gapped BLAST and PSIBLAST: A new generation of protein database search programs. Nucleic Acids Research, 25 (17): 3 389–3 402.CrossRefGoogle Scholar
  2. Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biology, 11 (10): R106.Google Scholar
  3. Andreou A, Brodhun F, Feussner I. 2009. Biosynthesis of oxylipins in non–mammals. Progress in Lipid Research, 48 (3–4): 148–170.CrossRefGoogle Scholar
  4. Baldauf S L. 2008. An overview of the phylogeny and diversity of eukaryotes. Journal of Systematics and Evolution, 46 (3): 263–273.Google Scholar
  5. Burton J N, Adey A, Patwardhan R P, Qiu R L, Kitzman J O, Shendure J. 2013. Chromosome–scale scaffolding of de novo genome assemblies based on chromatin interactions. Nature Biotechnology, 31 (12): 1 119–1 125.CrossRefGoogle Scholar
  6. Cock J M, Sterck L, Rouzé P, Scornet D, Allen A E, Amoutzias G, Anthouard V, Artiguenave F, Aury J M, Badger J H, Beszteri B, Billiau K, Bonnet E, Bothwell J H, Bowler C, Boyen C, Brownlee C, Carrano C J, Charrier B, Cho G Y, Coelho S M, Collén J, Corre E, Da Silva C, Delage L, Delaroque N, Dittami S M, Doulbeau S, Elias M, Farnham G, Gachon C M, Gschloessl B, Heesch S, Jabbari K, Jubin C, Kawai H, Kimura K, Kloareg B, Küpper F C, Lang D, Le Bail A, Leblanc C, Lerouge P, Lohr M, Lopez P J, Martens C, Maumus F, Michel G, Miranda–Saavedra D, Morales J, Moreau H, Motomura T, Nagasato C, Napoli C A, Nelson D R, Nyvall–Collén P, Peters A F, Pommier C, Potin P, Poulain J, Quesneville H, Read B, Rensing S A, Ritter A, Rousvoal S, Samanta M, Samson G, Schroeder D C, Ségurens B, Strittmatter M, Tonon T, Tregear J W, Valentin K, von Dassow P, Yamagishi T, Van de Peer Y, Wincker P. 2010. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 465 (7298): 617–621.CrossRefGoogle Scholar
  7. Cosse A, Potin P, Leblanc C. 2009. Patterns of gene expression induced by oligoguluronates reveal conserved and environment–specific molecular defense responses in the brown alga Laminaria digitata. New Phytologist, 182 (1): 239–250.CrossRefGoogle Scholar
  8. Delaroque N, Boland W. 2008. The genome of the brown alga Ectocarpus siliculosus contains a series of viral DNA pieces, suggesting an ancient association with large dsDNA viruses. BMC Evolutionary Biology, 8: 110.CrossRefGoogle Scholar
  9. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, de Winter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S. 2009. Real–time DNA sequencing from single polymerase molecules. Science, 323 (5910): 133–138.CrossRefGoogle Scholar
  10. Enquist–Newman M, Faust A M E, Bravo D D, Santos C N S, Raisner R M, Hane A, Sarvabhowman P, Le C, Regitsky D D, Cooper S R, Peereboom L, Clark A, Martinez Y, Goldsmith J, Cho M Y, Donohoue P D, Luo L, Lamberson B, Tamrakar P, Kim E J, Villari J L, Gill A, Tripathi S A, Karamchedu P, Paredes C J, Rajgarhia V, Kotlar H K, Bailey R B, Miller D J, Ohler N L, Swimmer C, Yoshikuni Y. 2014. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature, 505 (7482): 239–243.CrossRefGoogle Scholar
  11. Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q D, Chen Z H, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren B W, Nusbaum C, Lindblad–Toh K, Friedman N, Regev A. 2011. Full–length transcriptome assembly from RNA–seq data without a reference genome. Nature Biotechnology, 29 (7): 644–652.CrossRefGoogle Scholar
  12. Ji M. 2004. Algal Chemistry. Science Press, Beijing. 812p. (in Chinese)Google Scholar
  13. Keeling P J, Burger G, Durnford D G, Lang B F, Lee R W, Pearlman R E, Roger A J, Gray M W. 2005. The tree of eukaryotes. Trends in Ecology and Evolution, 20(12): 670–676.Google Scholar
  14. Kiseleva A A, Tarachovskaya E A, Shishova M F. 2012. Biosynthesis of phytohormones in algae. Russian Journal of Plant Physiology, 59 (5): 595–610.CrossRefGoogle Scholar
  15. Kraan S. 2013. Mass–cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production, Mitigation and Adaptation Strategies for Global Change, 18 (1): 27–46.CrossRefGoogle Scholar
  16. Küpper F C, Schweigert N, Gall E A, Legendre J M, Vilter H, Kloareg B. 1998. Iodine uptake in Laminariales involves extracellular, haloperoxidase–mediated oxidation of iodide. Planta, 207 (2): 163–171.CrossRefGoogle Scholar
  17. Lane C E, Archibald J M. 2008. The eukaryotic tree of life: endosymbiosis takes its TOL. Trends in Ecology and Evolution, 23 (5): 268–275.CrossRefGoogle Scholar
  18. Le Bail A, Billoud B, Kowalczyk N, Kowalczyk M, Gicquel M, Le Panse S, Stewart S, Scornet D, Cock J M, Ljung K, Charrier B. 2010. Auxin metabolism and function in the multicellular brown alga Ectocarpus siliculosus. Plant Physiology, 153 (1): 128–144.CrossRefGoogle Scholar
  19. Li X J, Zhang Z Z, Qu S C, Liang G J, Sun J, Zhao N, Cui C J, Cao Z M, Li Y, Pan J H, Yu S H, Wang Q Y, Li X, Luo S J, Song S F, Guo L, Yang G P. 2016. Improving seedless kelp ( Saccharina japonica ) during its domestication by hybridizing gametophytes and seedling–raising from sporophytes. Scientific Reports, 6: 21 255.CrossRefGoogle Scholar
  20. Lieberman–Aiden E, van Berkum N L, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie B R, Sabo P J, Dorschner M O, Sandstrom R, Bernstein B, Bender M A, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny L A, Lander E S, Dekker J. 2009. Comprehensive mapping of long–range interactions reveals folding principles of the human genome. Science, 326 (5950): 289–293.CrossRefGoogle Scholar
  21. Mao X, Cai T, Olyarchuk J G, Wei L. 2005. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics, 21 (19): 3 787–3 793.CrossRefGoogle Scholar
  22. Miao Y Y, Zhu Z B, Guo Q S, Zhu Y H, Yang X H, Sun Y. 2016. Transcriptome analysis of differentially expressed genes provides insight into stolon formation in Tulipa edulis. Frontiers in Plant Science, 7: 409.Google Scholar
  23. Michel G, Tonon T, Scornet D, Cock J M, Kloareg B. 2010a. Central and storage carbon metabolism of the brown alga Ectocarpus siliculosus: Insights into the origin and evolution of storage carbohydrates in Eukaryotes. New Phytologist, 188 (1): 67–81.CrossRefGoogle Scholar
  24. Michel G, Tonon T, Scornet D, Cock J M, Kloareg B. 2010b. The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus: Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytologist, 188 (1): 82–97.CrossRefGoogle Scholar
  25. Nyvall P, Corre E, Boisset C, Barbeyron T, Rousvoal S, Scornet D, Kloareg B, Boyen C. 2003. Characterization of mannuronan C–5–epimerase genes from the brown alga Laminaria digitata. Plant Physiology, 133 (2):726–735.CrossRefGoogle Scholar
  26. Ritter A, Dittami S M, Goulitquer S, Correa J A, Boyen C, Potin P, Tonon T. 2014. Transcriptomic and metabolomic analysis of copper stress acclimation in Ectocarpus siliculosus highlights signaling and tolerance mechanisms in brown algae. BMC Plant Biology, 14: 116.CrossRefGoogle Scholar
  27. Shang D R, Ning J S, Zhao Y F, Zhai Y X, Shu B S, Sheng X F, Guo Y Y. 2011. Establishment of the determination on kelp alginate. Food Science and Technology, 36 (8): 252–254. (in Chinese with English abstract)Google Scholar
  28. Takeda H, Yoneyama F, Kawai S, Hashimoto W, Murata K. 2011. Bioethanol production from marine biomass alginate by metabolically engineered bacteria. Energy & Environmental Science, 4 (7): 2 575–2 581.CrossRefGoogle Scholar
  29. Thomas F, Cosse A, Le Panse S, Kloareg B, Potin P, Leblanc C. 2014. Kelps feature systemic defense responses: Insights into the evolution of innate immunity in multicellular eukaryotes. New Phytologist, 204 (3): 567–576.CrossRefGoogle Scholar
  30. Tonon T, Eveillard D, Prigent S, Bourdon J, Potin P, Boyen C, Siegel A. 2011. Toward systems biology in brown algae to explore acclimation and adaptation to the shore environment. Omics, 15 (12): 883–892.CrossRefGoogle Scholar
  31. Tonon T, Li Y, McQueen–Mason M. 2017. Mannitol biosynthesis in algae: More widespread and diverse than previously thought. New Phytologist, 213 (4): 1 573–1 579.CrossRefGoogle Scholar
  32. Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L. 2010. Transcript assembly and quantification by RNA–seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28 (5): 511–515.CrossRefGoogle Scholar
  33. Tsuda K, Somssich I E. 2015. Transcriptional networks in plant immunity. New Phytologist, 206 (3): 932–947.CrossRefGoogle Scholar
  34. Vanburen R, Bryant D, Edger P P, Tang H B, Burgess D, Challabathula D, Spittle K, Hall R, Gu J, Lyons E, Freeling M, Bartels D, Ten Hallers B, Hastie A, Michael T P, Mockler T C. 2015. Single–molecule sequencing of the desiccation–tolerant grass Oropetium thomaeum. Nature, 527 (7579): 508–511.CrossRefGoogle Scholar
  35. Wargacki A J, Leonard J F, Win M N, Regitsky D D, Santos C N S, Kim P B, Cooper S R, Raisner R M, Herman A, Sivitz A B, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y. 2012. An Engineered microbial platform for direct biofuel production from brown macroalgae. Science, 335 (6066): 308–313.CrossRefGoogle Scholar
  36. Wu H Y, Wang X Y, Zhu A C. 2015. Analysis of component changes of Saccharina japonica at mushroom–adult stage. Marine Sciences, 39 (8): 35–38. (in Chinese with English abstract)Google Scholar
  37. Yang G P, Li F F. 2014. Fermenting brown algal carbohydrates into ethanol with engineered microorganisms: a new horizon for bioethanol production. Marine Sciences, 38 (4): 88–95. (in Chinese with English abstract)Google Scholar
  38. Ye J, Fang L, Zheng H K, Zhang Y, Chen J, Zhang Z J, Wang J, Li S T, Li R Q, Bolund L, Wang J. 2006. WEGO: a web tool for plotting GO annotations. Nucleic Acids Research, 34 (S2): W293–W297.Google Scholar
  39. Ye N H, Zhang X W, Miao M, Fan X, Zheng Y, Xu D, Wang J F, Zhou L, Wang D S, Gao Y, Wang Y T, Shi W Y, Ji P F, Li D M, Guan Z, Shao C W, Zhuang Z M, Gao Z Q, Qi J, Zhao F Q. 2015. Saccharina genomes provide novel insight into kelp biology. Nature Communications, 6: 6986.CrossRefGoogle Scholar
  40. Young M D, Wakefield M J, Smyth G K, Oshlack A. 2010. Gene ontology analysis for RNA–seq: Accounting for selection bias. Genome Biology, 11 (2): R14.Google Scholar
  41. Zhang Y H, Li W J, Dou Y J, Zhang J X, Jiang G H, Miao L X, Han G F, Liu Y X, Li H, Zhang Z H. 2015. Transcript quantification by RNA–seq reveals differentially expressed genes in the red and yellow fruits of Fragaria vesca. PLoS One, 10 (12): e0144356.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Marine Life SciencesOcean University of ChinaQingdaoChina
  2. 2.Shandong Oriental Ocean Sci-Tech Co., Ltd.YantaiChina
  3. 3.Key Laboratory of Marine Genetics and Breeding of Ministry of EducationOcean University of ChinaQingdaoChina
  4. 4.Institutes of Evolution and Marine BiodiversityOcean University of ChinaQingdaoChina

Personalised recommendations