Advertisement

Journal of Oceanology and Limnology

, Volume 36, Issue 6, pp 2308–2321 | Cite as

Functional characterization of a Δ6 fatty acid desaturase gene and its 5′-upstream region cloned from the arachidonic acidrich microalga Myrmecia incisa Reisigl (Chlorophyta)

  • Li Zhang (张利)
  • Haisheng Cao (曹海生)
  • Pu Ning (宁璞)
  • Zhigang Zhou (周志刚)Email author
Article
  • 24 Downloads

Abstract

It is suggested that Δ6 fatty acid desaturase (FAD) plays a critical role in the biosynthesis of polyunsaturated fatty acids in plants and microalgae. But why does it adapt to the changed environments such as nitrogen starvation is seldom understood. One Δ6 FAD gene ( MiD6fad ) from an arachidonic acidrich microalga Myrmecia incisa Reisigl (Chlorophyta) was first heterologously expressed in Saccharomyces cerevisiae for the identification of function. The fatty acid profile of transgenic yeast detected by gas chromatography-mass spectrometry illustrated that the enzyme MiD6FAD could convert linoleic and α - linolenic acids to γ-linolenic and stearidonic acids, respectively, demonstrating that MiD6fad encoded a Δ6 FAD. A 1 965-bp fragment of the cloned 2 347-bp 5′-upstream region of MiD6fad was next subcloned and fused upstream with green fluorescent protein (GFP) gene to replace the GAL1 promoter of the vector pYES2. The generated construct was transformed into S. cerevisiae for function determination. Confocal microscopic images of the transformed line illustrated that this inserted fragment could drive GFP expression, which was further verified by fluorescence intensity quantification and Western blot analysis using anti- GFP antibody. The conversion efficiency (approximately 2% - 3%) of MiD6FAD was much lower than the reported ω 3 FAD and Δ6 elongase in this microalga, suggesting that MiD6FAD catalysed the possible ratelimiting step for ArA biosynthesis. The presence of several putative cis -acting regulatory elements in this identified promoter sheds new light on the regulation mechanism research of Δ6 FAD transcription for the ArA production in M. incisa in changing environmental factors.

Keyword

arachidonic acid (ArA) fatty acid desaturase (FAD) green fluorescent protein (GFP) green microalga Saccharomyces cerevisiae 5′-upstream region (5′-USR) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

343_2019_7305_MOESM1_ESM.pdf (1.2 mb)
Functional characterization of a Δ6 fatty acid desaturase gene and its 5′-upstream region cloned from the arachidonic acidrich microalga Myrmecia incisa Reisigl (Chlorophyta)

References

  1. Camargo A, Llamas Á, Schnell R A, Higuera J J, González–Ballester D, Lefebvre P A, Fernández E, Galván A. 2007. Nitrate signaling by the regulatory gene NIT2 in Chlamydomonas. Plant Cell, 19 (11): 3 491–3 503.Google Scholar
  2. Chen C X, Sun Z, Cao H S, Fang F L, Ouyang L L, Zhou Z G. 2015. Identification and characterization of three genes encoding acyl–CoA: diacylglycerolacyltransferase (DGAT) from the microalga Myrmecia incisa Reisigl. Algal Res earch, 12: 280–288.Google Scholar
  3. Chiang T Y, Marzluf G A. 1994. DNA recognition by the NIT2 nitrogen regulatory protein: importance of the number, spacing, and orientation of GATA core elements and their flanking sequences upon NIT2 binding. Biochemistry, 33 (2): 576–582.Google Scholar
  4. Dong X W, He Q F, Peng Z Y, Yu J H, Bian F, Li Y Z, Bi Y P. 2016. Production of γ–linolenic acid and stearidonic acid by Synechococcus sp. PCC7002 containing cyanobacterial fatty acid desaturase genes. Chin ese J ournal of Oceanology and Limn ology, 34(4): 772–780.Google Scholar
  5. Dunn M A, White A J, Vural S, Hughes M A. 1998. Identification of promoter elements in a low–temperature–responsive gene ( blt 4.9) from barley ( Hordeum vulgare L.). Plant Molecular Biology, 38 (4): 551–564.Google Scholar
  6. Guschina I A, Harwood J L. 2006. Lipids and lipid metabolism in eukaryotic algae. Prog ress in Lipid Res earch, 45 (2): 160–186.Google Scholar
  7. Harwood J L, Guschina I A. 2009. The versatility of algae and their lipid metabolism. Biochimie, 91 (6): 679–684.Google Scholar
  8. Hazel J R. 1995. Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu al Rev iew of Physiology, 57: 19–42.Google Scholar
  9. Higo K, Ugawa Y, Iwamoto M, Korenaga T. 1999. Plant cisacting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res earch, 27 (1): 297–300.Google Scholar
  10. Houslay M D, Gordon L M. 1983. The activity of adenylate cyclase is regulated by the nature of its lipid environment. Curr ent Top ics in Membr anes and Transport, 18: 179–231.Google Scholar
  11. Huang J Z, Jiang X Z, Xia X F, Yu A Q, Mao R Y, Chen X F, Tian B Y. 2011. Cloning and functional identification of delta5 fatty acid desaturase gene and its 5′–upstream region from marine fungus Thraustochytrium sp. FJN–10. Mar ine Biotechnology, 13 (1): 12–21.Google Scholar
  12. Iskandarov U, Khozin–Goldberg I, Cohen Z. 2010. Identification and characterization of Δ12, Δ6, and Δ5 desaturases from the green microalga Parietochloris incisa. Lipids, 45 (6): 519–530.Google Scholar
  13. Kaiser C, Michaelis S, Mitchel A. 1994. Methods in Yeast Genetics. Cold Spring Harbor. Cold Spring Harbor Laboratory Press, New York. 202p.Google Scholar
  14. Kensy F, Zang E, Faulhammer C, Tan R K, Büchs J. 2009. Validation of a high–throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates. Microb ial Cell Fact ories, 8: 31.Google Scholar
  15. Khozin–Goldberg I, Leu S, Boussiba S. 2016. Microalgae as a source for VLC–PUFA production. In: Nakamura Y, Li–Beisson Y eds. Lipids in Plant and Algae Development. Springer, Cham. p.471–510.Google Scholar
  16. Kim M J, Kim H, Shin J S, Chung C H, Ohlrogge J B, Suh M C. 2006. Seed–specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis–regulatory elements in the SeFAD2 promoter and enhancers in the 5′–UTR intron. Molecular Genet ics and Genomics, 276 (4): 351–368.Google Scholar
  17. Laoteng K, Ruenwai R, Tanticharoen M, Cheevadhanarak S. 2005. Genetic modification of essential fatty acids biosynthesis in Hansenula polymorpha. FEMS Microbiology Lett ers, 245 (1): 169–178.Google Scholar
  18. Leonard A E, Pereira S L, Sprecher H, Huang Y S. 2004. Elongation of long–chain fatty acids. Prog ress in Lipid Res earch, 43 (1): 36–54.Google Scholar
  19. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. 2002. PlantCARE, a database of plant cis–acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res earch, 30 (1): 325–327.Google Scholar
  20. Li H, Ouyang L L, Zhou Z G. 2012. Low–temperature–induced expression of a ω3 fatty acid desaturase gene ( ω3FAD ) from Myrmecia incisa in Saccharomyces cerevisiae. J ournal of Agric ultural Biotechnology, 20 (7): 735–744. (in Chinese with English abstract)Google Scholar
  21. Liu F, Li H, Li C Y, Ouyang L L, Zhou Z G. 2012. Characterization of fatty acid desaturase (FAD) genes in Myrmecia incisa and the effect of nitrogen starvation on their transcription. J ournal of Fish ery Sci ences of China, 19 (5): 729–740. (in Chinese with English abstract)Google Scholar
  22. Los D A, Mironov K S, Allakhverdiev S I. 2013. Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth esis Res earch, 116 (2–3): 489–509.Google Scholar
  23. Los D A, Murata N. 1998. Structure and expression of fatty acid desaturases. Biochim ica et Biophys ica Acta, 1394 (1): 3–15.Google Scholar
  24. Los D A, Ray M K, Murata N. 1997. Differences in the controlof the temperature–dependent expression of four genes for desaturases in Synechocystis sp. PCC 6803. Molecular Microbiology, 25 (6): 1 167–1 175.Google Scholar
  25. Lowry J A, Atchley W R. 2000. Molecular evolution of the GATA family of transcription factors: conservation within the DNA–binding domain. J ournal of Molecular Evolution, 50 (2): 103–115.Google Scholar
  26. Mansilla M C, Banchio C E, De Mendoza D. 2008. Signalling pathways controlling fatty acid desaturation. In: Quinn P J, Wang X Y eds. Lipids in Health and Disease. Springer, Dordrecht. p.71–99.Google Scholar
  27. Martin C E, Oh C S, Jiang Y D. 2007. Regulation of long chain unsaturated fatty acid synthesis in yeast. Biochim ica et Biophys ica Acta, 1771 (3): 271–285.Google Scholar
  28. Meesapyodsuk D, Qiu X. 2012. The front–end desaturase: structure, function, evolution and biotechnological use. Lipids, 47 (2): 227–237.Google Scholar
  29. Murata N, Wada H. 1995. Acyl–lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem ical J ournal, 308 (1): 1–8.Google Scholar
  30. Na–Ranong S, Laoteng K, Kittakoop P, Tantichareon M, Cheevadhanarak S. 2005. Substrate specificity and preference of Δ 6–desaturase of Mucor rouxii. FEBS Lett ers, 579 (12): 2 744–2 748.Google Scholar
  31. Nayeri F D, Yarizade K. 2014. Bioinformatics study of delta–12 fatty acid desaturase 2 (FAD2) gene in oilseeds. Molecular Biology Rep orts, 41 (8): 5 077–5 087.Google Scholar
  32. Nishiuchi T, Nakamura T, Abe T, Kodama H, Nishimura M, Iba K. 1995. Tissue–specific and light–responsive regulation of the promoter region of the Arabidopsis thaliana chloroplast–3 fatty acid desaturase gene ( FAD7 ). Plant Molecular Biology, 29 (3): 599–609.Google Scholar
  33. Nwankwo J O, Spector A A, Domann F E. 2003. A nucleotide insertion in the transcriptional regulatory region of FADS2 gives rise to human fatty acid delta–6–desaturase deficiency. J ournal of Lipid Res earch, 44 (12): 2 311–2 319.Google Scholar
  34. Ouyang L L, Chen S H, Li Y, Zhou Z G. 2013a. Transcriptome analysis reveals unique C4–like photosynthesis and oil body formation in an arachidonic acid–rich microalga Myrmecia incisa Reisigl H4301. BMC Genomics, 14: 396.Google Scholar
  35. Ouyang L L, Li H, Liu F, Tong M, Yu S Y, Zhou Z G. 2013b. Accumulation of arachidonic acid in a green microalga, M yrmecia incisa H4301, enhanced by nitrogen starvation and its molecular regulation mechanisms. In: Dumancas G G, Murdianti B S, Lucas E A eds. Arachidonic Acid: Dietary Sources and General Functions. Nova Science Publishers, Inc., New York. p.1–20.Google Scholar
  36. Qi B X, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier J A, Stobart A K, Lazarus C M. 2004. Production of very long chain polyunsaturated omega–3 and omega–6 fatty acids in plants. Nat ure Biotechnology, 22 (6): 739–745.Google Scholar
  37. Rastogi R, Bate N J, Sivasankar S, Rothstein S J. 1997. Footprinting of the spinach nitrite reductase gene promoter reveals the preservation of nitrate regulatory elements between fungi and higher plants. Plant Molecular Biology, 34 (3): 465–476.Google Scholar
  38. Reisigl H. 1964. Zur systematik und ökologie alpiner Bodenalgen. Ö sterreichische Botanische Zeitschrift, 111 (4): 402–499.Google Scholar
  39. Reyes J C, Muro–Pastor M I, Florencio F J. 2004. The GATA family of transcription factors in Arabidopsis and rice. Plant Physiology, 134 (4): 1 718–1 732.Google Scholar
  40. Russell N J. 1984. Mechanisms of thermal adaptation in bacteria: blueprints for survival. Trends in Biochem ical Sci ences, 9 (3): 108–112.Google Scholar
  41. Saed Taha R, Ismail I, Zainal Z, Abdullah S N A. 2012. The stearoyl–acyl–carrier–protein desaturase promoter ( Des ) from oil palm confers fruit–specific GUS expression in transgenic tomato. J ournal of Plant Physiology, 169 (13): 1 290–1 300.Google Scholar
  42. Schnell R A, Lefebvre P A. 1993. Isolation of the Chlamydomonas regulatory gene NIT2 by transposon tagging. Genetics, 134 (3): 737–747.Google Scholar
  43. Sheff M A, Thorn K S. 2004. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast, 21 (8): 661–670.Google Scholar
  44. Skala M C, Riching K M, Gendron–Fitzpatrick A, Eickhoff J, Eliceiri K W, White J G, Ramanujam N. 2007. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc eedings of the Nat ional Acad emy of Sci ences of the U nited S tates of A merica, 104 (49): 19 494–19 499.Google Scholar
  45. Stanier R Y, Kunisawa R, Mandel M, Cohen–Bazire G. 1971. Purification and properties of unicellular blue–green algae (order Chroococcales). Bacteriological Rev iews, 35 (2): 171–205.Google Scholar
  46. Suzuki I, Los D A, Kanesaki Y, Mikami K, Murata N. 2000. The pathway for perception and transduction of lowtemperature signals in Synechocystis. EMBO J ournal, 19 (6): 1 327–1 334.Google Scholar
  47. Tan L, Li S E, Zhang X Y, Ma F Y. 2015. Cloning and functional analysis of Δ6–desaturase gene and its upstream region from Mortierella sp. AGED. Journal of the Science of Food and Agriculture, 95 (15): 3 077–3 083.Google Scholar
  48. Tao Y, Marzluf G A. 1999. The NIT2 nitrogen regulatory protein of Neurospora: expression and stability of nit–2 mRNA and protein. Curr ent Genet ics, 36 (3): 153–158.Google Scholar
  49. Thompson G A Jr. 1989. Membrane acclimation by unicellular organisms in response to temperature change. Journal of Bioenerg etics and Biomembr anes, 21 (1): 43–60.Google Scholar
  50. Tocher D R, Leaver M J, Hodgson P A. 1998. Recent advances in the biochemistry and molecular biology of fatty acyl desaturases. Prog ress in Lipid Res earch, 37 (2–3): 73–117.Google Scholar
  51. Tong M, Yu S Y, Ouyang L L, Zhou Z G. 2011. Comparison of increased arachidonic acid content in Myrmecia incisa cultured during the course of nitrogen or phosphorus starvation. J ournal of Fish eries of China, 35 (5): 763–773. (in Chinese with English abstract)Google Scholar
  52. Wallis J G, Watts J L, Browse J. 2002. Polyunsaturated fatty acid synthesis: what will they think of next? Trends in Biochemical Sciences, 27 (9): 467–473.Google Scholar
  53. Wan X, Zhang Y B, Wang P, Jiang M L. 2011. Molecular cloning and expression analysis of a delta 6–fatty acid desaturase gene from Rhizopus stolonifer strain YF6 which can accumulate high levels of gamma–linolenic acid. J ournal of Microbiology, 49 (1): 151–154.Google Scholar
  54. Warude D, Joshi K, Harsulkar A. 2006. Polyunsaturated fatty acids: biotechnology. Crit ical Rev iews in Biotechnology, 26 (2): 83–93.Google Scholar
  55. Wu S J, Zhang L J, Chen X L, Miao X M, Wang J, Fu H. 2013. Identification and functional analysis of a Δ6–desaturase gene and the effects of temperature and wounding stresses on its expression in Microula sikkimensis leaves. Biosci ence, Biotechnology, and Biochem istry, 77 (9): 1 925–1 930.Google Scholar
  56. Xiao G, Zhang Z Q, Yin C F, Liu R Y, Wu X M, Tan T L, Chen S Y, Lu C M, Guan C Y. 2014. Characterization of the promoter and 5′–UTR intron of oleic acid desaturase (FAD2) gene in Brassica napus. Gene, 545 (1): 45–55.Google Scholar
  57. Xue W B, Liu F, Sun Z, Zhou Z G. 2016. A Δ–9 fatty acid desaturase gene in the microalga Myrmecia incisa Reisigl: cloning and functional analysis. International Journal of Molecular Sciences, 17 (7): 1143.Google Scholar
  58. Ye R X, Yu Z, Shi W W, Gao H J, Bi Y H, Zhou Z G. 2014. Characterization of α–type carbonic anhydrase (CA) gene and subcellular localization of α–CA in the gametophytes of Saccharina japonica. Journal of Applied Phycology, 26 (2): 881–890.Google Scholar
  59. Yu S Y, Li H, Tong M, Ouyang L L, Zhou Z G. 2012. Identification of a Δ6 fatty acid elongase gene for arachidonic acid biosynthesis localized to the endoplasmic reticulum in the green microalga Myrmecia incisa Reisigl. Gene, 493 (2): 219–227.Google Scholar
  60. Zhang C J, Hou Y Q, Hao Q G, Chen H F, Chen L M, Yuan S L, Shan Z H, Zhang X J, Yang Z L, Qiu D Z, Zhou X A, Huang W J. 2015. Genome–wide survey of the soybean GATA transcription factor gene family and expression analysis under low nitrogen stress. PLoS One, 10 (4): e0125174.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Li Zhang (张利)
    • 1
  • Haisheng Cao (曹海生)
    • 1
  • Pu Ning (宁璞)
    • 1
  • Zhigang Zhou (周志刚)
    • 1
    • 2
    • 3
    Email author
  1. 1.Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of EducationShanghai Ocean UniversityShanghaiChina
  2. 2.National Demonstration Center for the Experimental Teaching of Fisheries ScienceShanghai Ocean UniversityShanghaiChina
  3. 3.International Research Center for Marine Biosciences Conferred by Ministry of Science and TechnologyShanghai Ocean UniversityShanghaiChina

Personalised recommendations