Journal of Oceanology and Limnology

, Volume 36, Issue 6, pp 2297–2307 | Cite as

The expression characteristics of vitellogenin (VTG) in response to B(a)p exposure in polychaete Perinereis aibuhitensis

  • Wanjuan Li (李婉娟)
  • Shenglun Xue (薛圣伦)
  • Min Pang (庞敏)
  • Zonghao Yue (岳宗豪)
  • Dazuo Yang (杨大佐)
  • Yibing Zhou (周一兵)
  • Huan Zhao (赵欢)Email author


In order to investigate the endocrine toxicity of B(a)p to marine polychaete Perinereis aibuhitensis, vitellogenin (VTG) cDNA from the P. aibuhitensis was isolated, recombinated and expressed for the first time. The full length P. aibuhitensis vitellogenin gene (PaVTG) was 5 325 bp, and encoded 1 692 amino acids. It contained the vitellogenin_N domain of unknown function (DUF1943), a von Willebrand factor type D domain, as well as a conserved KALGNAG motif. The expression of VTG gene and protein were mainly up-regulated after exposed to B(a)p at transcriptional and translational levels. PaVTG gene expression did not change significantly at day 4. At day 7 PaVTG expression was up-regulated in 0.5 μg/L and 5 μg/L B(a)p group. At day 14 PaVTG was significantly up-regulated in 0.5–10 μg/L B(a)p. The protein expression of PaVTG in 0.5 μg/L and 10 μg/L B(a)p group was up-regulated with time prolonging, but the expression in 5 μg/L and 50 μg/L B(a)p group exhibited first increased and then decreased trend. With the increasing of B(a)p concentration PaVTG mRNA and protein expression both firstly increased then decreased. In contrast to B(a)p exposure, estradiol did not induce PaVTG gene and protein expression, until late times of exposure (14 d). Overall, the results in this study indicate that PaVTG could be used as a potential indicator of the effects environmental estrogenic compounds.


Perinereis aibuhitensis vitellogenin B(a)p expression profiles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auttarat J, Phiriyangkul P, Utarabhand P. 2006. Characterization of vitellin from the ovaries of the banana shrimp Litopenaeus merguiensis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 143 (1): 27–36.CrossRefGoogle Scholar
  2. Boulangé–Lecomte C, Xuereb B, Trémolet G, Duflot A, Giusti N, Olivier S, Legrand E, Forget–Leray J. 2017. Controversial use of vitellogenin as a biomarker of endocrine disruption in crustaceans: new adverse pieces of evidence in the copepod Eurytemora affinis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 201: 66–75.Google Scholar
  3. Charles G D, Bartels M J, Zacharewski T R, Gollapudi B B, Freshour N L, Carney E W. 2000. Activity of benzo[a] pyrene and its hydroxylated metabolites in an estrogen receptor–α reporter gene assay. Toxicological Sciences, 55 (2): 320–326.CrossRefGoogle Scholar
  4. Chen X, Zhou Y B, Yang D Z, Zhao H, Wang L L, Yuan X T. 2012. CYP4 mRNA expression in marine polychaete Perinereis aibuhitensis in response to petroleum hydrocarbon and deltamethrin. Marine Pollution Bulletin, 64 (9): 1 782–1 788.CrossRefGoogle Scholar
  5. Da Silva Rocha A J, Gomes V, De Arruda Campos Rocha Passos M J, Hasue F M, Alves Santos T C, Bícego M C, Taniguchi S, Van Ngan P. 2012. Erod activity and genotoxicity in the seabob shrimp Xiphopenaeus kroyeri exposed to benzo[a]pyrene (Bap) concentrations. Environmental Toxicology and Pharmacology, 34 (3): 995–1003.CrossRefGoogle Scholar
  6. Fertuck K C, Matthews J B, Zacharewski T R. 2001. Hydroxylated benzo[a]pyrene metabolites are responsible for in vitro estrogen receptor–mediated gene expression induced by benzo[a]pyrene, but do not elicit uterotrophic effects in vivo. Toxicological Sciences, 59 (2): 231–240.CrossRefGoogle Scholar
  7. Gagné F, Blaise C, Salazar M, Salazar S, Hansen P D. 2001. Evaluation of estrogenic effects of municipal effluents to the freshwater mussel Elliptio complanata. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 128 (2): 213–225.CrossRefGoogle Scholar
  8. García C F, Heras H. 2012. Vitellogenin and Lipovitellin from the prawn Macrobrachium borellii as hydrocarbon pollution biomarker. Marine Pollution Bulletin, 64 (8): 1 631–1 636.CrossRefGoogle Scholar
  9. García–Alonso J, Hoeger U, Rebscher N. 2006. Regulation of vitellogenesis in Nereis virens (Annelida: Polychaeta): effect of estradiol–17β on eleocytes. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 143 (1): 55–61.CrossRefGoogle Scholar
  10. Hayakawa K, Onoda Y, Tachikawa C, Hosoi S, Yoshita M, Woon Chung S, Kizu R, Toriba A, Kameda T, Tang N. 2007. Estrogenic/antiestrogenic activities of polycyclic aromatic hydrocarbons and their monohydroxylated derivatives by yeast two–hybrid assay. Journal of Health Science, 53 (5): 562–570.CrossRefGoogle Scholar
  11. Huang D J, Chen H C, Wu J P, Wang S Y. 2006. Reproduction obstacles for the female green neon shrimp ( Neocaridina denticulata) after exposure to chlordane and lindane. Chemosphere, 64 (1): 11–16.CrossRefGoogle Scholar
  12. Hwang D S, Lee K W, Han J, Park H G, Lee J, Lee Y M, Lee J S. 2010. Molecular characterization and expression of vitellogenin ( Vg ) genes from the cyclopoid copepod, Paracyclopina nana exposed to heavy metals. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 151 (3): 360–368.Google Scholar
  13. Jørgensen A, Giessing A M B, Rasmussen L J, Andersen O. 2008. Biotransformation of polycyclic aromatic hydrocarbons in marine polychaetes. Marine Environmental Research, 65 (2): 171–186.CrossRefGoogle Scholar
  14. Jubeaux G, Simon R, Salvador A, Quéau H, Chaumot A, Geffard O. 2012. Vitellogenin–like proteins in the freshwater amphipod Gammarus fossarum (Koch, 1835): functional characterization throughout reproductive process, potential for use as an indicator of oocyte quality and endocrine disruption biomarker in males. Aquatic Toxicology, 112–113: 72–82.CrossRefGoogle Scholar
  15. Kanaly R A, Harayama S. 2000. Biodegradation of highmolecular–weight polycyclic aromatic hydrocarbons by bacteria. Journal of Bacteriology, 182 (8): 2 059–2 067.CrossRefGoogle Scholar
  16. Laffon B, Rábade T, Pásaro E, Méndez J. 2006. Monitoring of the impact of Prestige oil spill on Mytilus galloprovincialis from Galician coast. Environment International, 32 (3): 342–348.CrossRefGoogle Scholar
  17. Lewis C, Watson G J. 2012. Expanding the ecotoxicological toolbox: the inclusion of polychaete reproductive endpoints. Marine Environmental Research, 75: 10–22.CrossRefGoogle Scholar
  18. Liu P P, Miao J J, Song Y, Pan L Q, Yin P F. 2017. Effects of 2,2',4,4'–tetrabromodipheny ether (bde–47) on gonadogenesis of the manila clam Ruditapes philippinarum. Aquatic Toxicology, 193: 178–186.CrossRefGoogle Scholar
  19. Marin M G, Matozzo V. 2004. Vitellogenin induction as a biomarker of exposure to estrogenic compounds in aquatic environments. Marine Pollution Bulletin, 48 (9–10): 835–839.CrossRefGoogle Scholar
  20. Matozzo V, Gagné F, Marin M G, Ricciardi F, Blaise C. 2008. Vitellogenin as a biomarker of exposure to estrogenic compounds in aquatic invertebrates: a review. Environment International, 34 (4): 531–545.CrossRefGoogle Scholar
  21. Miao J J, Pan L Q, Liu Jing, Zhang L. 2009. Effects of benzo[ a ] pyrene on DNA damage and histological alterations in gonad of scallop Chlamys farreri. Marine Environmental Research, 67 (1): 47–52.CrossRefGoogle Scholar
  22. Monteiro P R R, Reis–Henriques M A, Coimbra J. 2000. Polycyclic aromatic hydrocarbons inhibit in vitro ovarian steroidogenesis in the flounder ( Platichthys flesus L. ). Aquatic Toxicology, 48 (4): 549–559.CrossRefGoogle Scholar
  23. Ni J B, Zeng Z, Kong D Z, Hou L, Huang H Q, Ke C H. 2014. Vitellogenin of fujian oyster, Crassostrea angulata: synthesized in the ovary and controlled by estradiol–17β. General and Comparative Endocrinology, 202: 35–43.CrossRefGoogle Scholar
  24. OECD. 2010. Workshop report on OECD countries activities regarding testing, assessment and management of endocrine disrupters. OECD, Copenhagen, Denmark.Google Scholar
  25. Park K, Kwak I S. 2010. Molecular effects of endocrinedisrupting chemicals on the Chironomus riparius estrogenrelated receptor gene. Chemosphere, 79 (9): 934–941.CrossRefGoogle Scholar
  26. Phiriyangkul P, Puengyam P, Jakobsen I B, Utarabhand P. 2007. Dynamics of vitellogenin mRNA expression during vitellogenesis in the banana shrimp Penaeus ( Fenneropenaeus ) merguiensis using real–time PCR. Molecular Reproduction & Development, 74 (9): 1 198–1 207.CrossRefGoogle Scholar
  27. Phoonsamran K, Direkbusarakom S, Chotipuntu P, Hirono I, Unajak S, Summpunn P, Wuthisuthimethavee S. 2017. Identification and Expression of Vitellogenin Gene in Polychaetes ( Perinereis sp.). Journal of Fisheries and Environment, 41 (1): 1–11.Google Scholar
  28. Puinean A M, Labadie P, Hill E M, Osada M, Kishida M, Nakao R, Novillo A, Callard I P, Rotchell J M. 2006. Laboratory exposure to 17β–estradiolfails to induce vitellogenin and estrogen receptor gene expression in the marine invertebrate Mytilus edulis. Aquatic Toxicology, 79 (4): 376–383.CrossRefGoogle Scholar
  29. Smolenaars M M W, Madsen O, Rodenburg K W, Van der Horst D J. 2007. Molecular diversity and evolution of the large lipid transfer protein superfamily. Journal of Lipid Research, 48 (3): 489–502.CrossRefGoogle Scholar
  30. Song Y Y, Yuan X T, Zhang S L, Yang D Z, Hao G, Zhou Y B. 2011. Single and joint toxic effects of benzo(a) pyrene and cadmium on development of three–setiger juvenile of polychaete Pernereis aibuhitensis Grube. Marine Environmental Science, 30 (3): 333–336. (in Chinese with English abstract)Google Scholar
  31. Thompson J R, Banaszak L J. 2002. Lipid–protein interactions in lipovitellin. Biochemistry, 41 (30): 9 398–9 409.CrossRefGoogle Scholar
  32. Tran T K A, MacFarlane G R, Kong R Y C, O'Connor W A, Yu R M K. 2016. Mechanistic insights into induction of vitellogenin gene expression by estrogens in sydney rock oysters, Saccostrea glomerata. Aquatic Toxicology, 174: 146–158.CrossRefGoogle Scholar
  33. Volz D C, Chandler G T. 2004. An enzyme–linked immunosorbent assay for lipovitellin quantification in copepods: a screening toolfor endocrine toxicity. Environmental Toxicology and Chemistry, 23 (2): 298–305.CrossRefGoogle Scholar
  34. Wang J, Wang W, Zhang X N, Tian H, Ru S G. 2015. Development of a lipovitellin–based goldfish ( Carassius auratus ) vitellogenin ELISA for detection of environmental estrogens. Chemosphere, 132: 166–171.CrossRefGoogle Scholar
  35. Wen J M, Pan L Q. 2015. Short–term exposure to benzo[a] pyrene disrupts reproductive endocrine status in the swimming crab Portunus trituberculatus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 174–175: 13–20.Google Scholar
  36. Won S J, Novillo A, Custodia N, Rie M T, Fitzgerald K, Osada M, Callard I P. 2005. The freshwater mussel ( Elliptio complanata ) as a Sentinel Species: vitellogenin and steroid receptors1. Integrative and Comparative Biology, 45 (1): 72–80.CrossRefGoogle Scholar
  37. Wu Q Y, Wang S Q, Chen X P, Li P. 2017. Reproductive toxicity assessment of benzo[a]pyrene in the marine polychaete Perinereis nuntia. Chinese Journal of Oceanology and Limnology, 35 (4): 867–873.CrossRefGoogle Scholar
  38. Zhang H, Pan L Q, Zhang L. 2012. Molecular cloning and characterization of estrogen receptor gene in the Scallop Chlamys farreri: expression profiles in response to endocrine disrupting chemicals. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 156 (1): 51–57.Google Scholar
  39. Zhang Q R, Zhou Q X, Wang J, Sun S L, Hua T, Ren L P. 2008. Influences of Cu or Cd on the neurotoxicity induced by petroleum hydrocarbons in ragworm Perinereis aibuhitensis. Journal of Environmental Sciences, 20 (3): 364–371.CrossRefGoogle Scholar
  40. Zhao H, Li W J, Zhao X D, Li X, Yang D Z, Ren H W, Zhou Y B. 2017. Cu/Zn superoxide dismutase (SOD) and catalase (CAT) response to crude oil exposure in the polychaete Perinereis aibuhitensis. Environmental Science and Pollution Research, 24 (1): 616–627.CrossRefGoogle Scholar
  41. Zheng H P, Zhang Q, Liu H L, Liu W H, Sun Z W, Li S K, Zhang T. 2012. Cloning and expression of vitellogenin (Vg) gene and its correlations with total carotenoids content and total antioxidant capacity in noble scallop Chlamys nobilis (Bivalve: Pectinidae). Aquaculture, 366–367: 46–53.CrossRefGoogle Scholar
  42. Zheng S L, Chen B, Wang Z, Qiu X Y, Yu X G, Freestone D, Liu Z H, Huang H, Yu W W, Xu X Z. 2010. Reproductive toxic effects of sublethal cadmium on the marine polychaete Perinereis nuntia. Ecotoxicology and Environmental Safety, 73 (6): 1 196–1 201.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wanjuan Li (李婉娟)
    • 1
  • Shenglun Xue (薛圣伦)
    • 1
  • Min Pang (庞敏)
    • 2
  • Zonghao Yue (岳宗豪)
    • 1
  • Dazuo Yang (杨大佐)
    • 1
  • Yibing Zhou (周一兵)
    • 1
  • Huan Zhao (赵欢)
    • 1
    Email author
  1. 1.Key Laboratory of Marine Bio-resource Restoration and Habitat Reparation in Liaoning ProvinceDalian Ocean UniversityDalianChina
  2. 2.Key Laboratory of Marine Ecology and Environmental Science and Engineering, First Institute of OceanographyState Oceanic AdministrationQingdaoChina

Personalised recommendations