Advertisement

Journal of Oceanology and Limnology

, Volume 36, Issue 6, pp 2268–2277 | Cite as

Isolation and callus formation of Gracilariopsis bailiniae (Gracilariales, Rhodophyta) protoplasts

  • Haihong Chen (陈海红)
  • Weizhou Chen (陈伟洲)Email author
  • Jingyi Shi (石经仪)
  • Zepan Chen (陈泽攀)
  • Yi Zhang (张毅)
Article
  • 25 Downloads

Abstract

This paper reports the first successful isolation of protoplasts from Gracilariopsis bailiniae and their callus formation. The base solution type, concentration of isolating enzymes, concentration of sorbitol, incubation time, temperature and pH of the enzyme solution were tested to optimize the protoplast yield. The optimized isolation conditions were: 40% base solution 3 (deionized water containing 25 mmol/L MESTris and 25 mmol/L CaCl2·2H2O) and 60% crude Marinomonas sp. YS-70 agarase solution, containing 2% w/v cellulase, 1% w/v macerozyme R-10 and 0.4 mol/L sorbitol, with incubation for 4 h at 28°C and pH 6.5. The highest yield of viable protoplasts, which was obtained in these conditions, was (1.75±0.25)×10 6 cells/g fresh weight. Cell wall regeneration of most protoplasts from G. bailiniae was complete within 60 h and the first division of cells happened after ≥3 days. Two division types were observed in the first division of protoplasts from G. bailiniae— asymmetric division and symmetric division. After the first division, the cells underwent a series of divisions to form callus cell masses.

Keyword

Gracilariopsis bailiniae enzyme marine bacterium protoplast isolation cell division callus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The authors thank Professor LIU Tao (Ocean University of China), Professor MEI Zhiping (Shantou University), Dr. WANG Hui (Shantou University) and Ms. WANG Zhongxia (Ocean University of China) for providing much advice and kind assistance.

References

  1. Araki T, Lu Z, Morishita T. 1998. Optimization of parameters for isolation of protoplasts from Gracilaria verrucosa (Rhodophyta). Journal of Marine Biotechnology, 6 (3): 193–197.Google Scholar
  2. Baweja P, Sahoo D, García–Jiménez P, Robaina R R. 2009. Review: seaweed tissue culture as applied to biotechnology: problems, achievements and prospects. Phycological Research, 57 (1): 45–58.CrossRefGoogle Scholar
  3. Bellanger F, Verdus M C, Henocq V, Christiaen D. 1990. Determination of the composition of the fibrillar part of Gracilaria verrucosa (Gracilariales, Rhodophyta) cell wall in order to prepare protoplasts. Hydrobiologia, 204–205 (1): 527–531.CrossRefGoogle Scholar
  4. Björk M, Ekman P, Wallin A, Pedersén M. 1990. Effects of growth rate and other factors on protoplast yield from four species of Gracilaria (Rhodophyta). Botanica Marina, 33 (5): 433–439.CrossRefGoogle Scholar
  5. Butler D M, Østgaard K, Boyen C, Evans L V, Jensen A, Kloareg B. 1989. Isolation conditions for high yields of protoplasts from Laminaria saccharina and L. digitata (Phaeophyceae). Journal of Experimental Botany, 40 (11): 1 237–1 246.CrossRefGoogle Scholar
  6. Chen Y C, Shih H C. 2000. Development of protoplasts of Ulva fasciata (Chlorophyta) for algal seed stock. Journal of Phycology, 36 (3): 608–615.CrossRefGoogle Scholar
  7. Chen Y C. 1998. Development of protoplasts from holdfasts and vegetative thalli of Monostroma latissimum (Chlorophyta, Monostromatacae) for algal seed stock. Journal of Phycology, 34 (6): 1 075–1 081.CrossRefGoogle Scholar
  8. Cheney D P, Mar E, Saga N, van der Meer J. 1986. Protoplast isolation and cell division in the agar–producing seaweed Gracilaria (Rhodophyta). Journal of Phycology, 22 (2): 238–243.Google Scholar
  9. Cheney D P. 1990. Genetic improvement of seaweeds through protoplast fusion. In: Yarish C, Penniman C A, Van Patten P eds. Economically Important Marine Plants of the Atlantic: their Biology and Cultivation. Connecticut Sea Grant College Program, Groton, CT, USA. p.15–25.Google Scholar
  10. Compton M E, Saunders J A, Veilleux R E. 2000. Use of protoplast for plant improvement. In: Trigiano R N, Gray D J eds. Plant Tissue Culture Concepts and Laboratory Exercise. CRC Press, Boca Raton, USA. p.249–261.Google Scholar
  11. Davey M R, Anthony P, Power J B, Lowe K C. 2005. Plant protoplasts: status and biotechnological perspectives. Biotechnology Advances, 23 (2): 131–171.CrossRefGoogle Scholar
  12. Dipakkore S, Reddy C R K, Jha B. 2005. Production and seeding of protoplasts of Porphyra okhaensis (Bangiales, Rhodophyta) in laboratory culture. Journal of Applied Phycology, 17 (4): 331–337.CrossRefGoogle Scholar
  13. Evans D A, Bravo J E. 1983. Protoplast isolation and culture. In: Evans D A, Sharp W R, Ammirato P V, Yamada Y eds. Handbook of Plant Cell Culture, Vol1. Techniques for Propagation and Breeding. Macmillan, New York, USA. p.124–176.Google Scholar
  14. Fujita Y, Saito M. 1990. Protoplast isolation and fusion in Porphyra (Bangiales, Rhodophyta). Hydrobiologia, 204–205 (1): 161–166.CrossRefGoogle Scholar
  15. Graham L E, Wilcox L W. 2000. Red algae. In: Graham L E, Wilcox L W eds. Algae. Prentice–Hall, Upper Saddle River, NJ. p.343–396.Google Scholar
  16. Gupta V, Kumar M, Kumari P, Reddy C R K, Jha B. 2011. Optimization of protoplast yields from the red algae Gracilaria dura (C. Agardh) J. Agardh and G. verrucosa (Huds.) Papenfuss. Journal of Applied Phycology, 23 (2): 209–218.Google Scholar
  17. Gupta V, Trivedi N, Kumar M, Reddy C R K, Jha B. 2013. Purification and characterization of exo–β–agarase from an endophytic marine bacterium and its catalytic potential in bioconversion of red algal cell wall polysaccharides into galactans. Biomass and Bioenergy, 49: 290–298.CrossRefGoogle Scholar
  18. Huddy S M, Meyers A E, Coyne V E. 2013. Protoplast isolation optimization and regeneration of cell wall in Gracilaria gracilis (Gracilariales, Rhodophyta). Journal of Applied Phycology, 25 (2): 433–443.CrossRefGoogle Scholar
  19. Huddy S M, Meyers A E, Coyne V E. 2015. Regeneration of whole plants from protoplasts of Gracilaria gracilis (Gracilariales, Rhodophyta). Journal of Applied Phycology, 27 (1): 427–435.CrossRefGoogle Scholar
  20. Hurtado–Ponce A Q. 1992. Rheological properties of agar from Gracilariopsis heteroclada (Zhang et Xia) Zhang et Xia (Gracilariales, Rhodophyta) treated with powdered commercial lime and aqueous alkaline solution. Botanica Marina, 35 (5): 365–370.Google Scholar
  21. Inoue A, Mashino C, Kodama T, Ojima T. 2011. Protoplast preparation from Laminaria japonica with recombinant alginate lyase and cellulase. Marine Biotechnology, 13 (2): 256–263.CrossRefGoogle Scholar
  22. Kito H, Kunimoto M, Kamanishi Y, Mizukami Y. 1998. Protoplast fusion between Monostroma nitidum and Porphyra yezoensis and subsequent growth of hybrid plants. Journal of Applied Phycology, 10 (1): 15–21.CrossRefGoogle Scholar
  23. Lafontaine N, Mussio I, Rusig A M. 2011. Production and regeneration of protoplasts from Grateloupia turuturu Yamada (Rhodophyta). Journal of Applied Phycology, 23 (1): 17–24.CrossRefGoogle Scholar
  24. Liu M Q, Yang X Q, Qi B, et al. 2013. Present situation and prospect of polysaccharide and phycobiliprotein from Gracilaria. Science and Technology of Food Industry, 34 (13): 338–341. (in Chinese with English abstract)Google Scholar
  25. Mantri V A. 2009. Studies on Biology of Gracilaria dura (C. Agardh) J. Agardh. Bhavnagar University, Bhavnagar, India.Google Scholar
  26. Mussio I, Rusig A M. 2006. Isolation of protoplasts from Fucus serratus and F. vesiculosus (Fucales, Phaeophyceae): factors affecting protoplast yield. Journal of Applied Phycology, 18 (6): 733–740.CrossRefGoogle Scholar
  27. Pan J Q, Li S D. 2010. Development and utilization of Gracilaria resources. Chinese Journal of Tropical Agriculture, 30 (10): 47–50, 89. (in Chinese with English abstract)Google Scholar
  28. Reddy C R K, Dipakkore S, Kumar G R, Jha B, Cheney D P, Fujita Y. 2006. An improved enzyme preparation for rapid mass production of protoplasts as seed stock for aquaculture of macrophytic marine green algae. Aquaculture, 260 (1–4): 290–297.CrossRefGoogle Scholar
  29. Reddy C R K, Gupta M K, Mantri V A, Jha B. 2008. Seaweed protoplasts: status, biotechnological perspectives and needs. Journal of Applied Phycology, 20 (5): 619–632.CrossRefGoogle Scholar
  30. Reddy C R K, Gupta V, Jha B. 2010. Developments in biotechnology of red algae. In: Chapman D J, Seckbach J eds. Red Algae in Genomic Age. Springer, New York. p.307–341.Google Scholar
  31. Reddy C R K, Kumar G R K, Siddhanta A K, Tewari A, Eswaran K. 2003. In vitro somatic embryogenesis and regeneration of somatic embryos from pigmented callus of Kappaphycus alvarezii (Doty) Doty (Rhodophyta, Gigartinales). Journal of Phycology, 39 (3): 610–616.CrossRefGoogle Scholar
  32. Saminathan K R, Ashok K S, Veeragurunathan V, Mantri V A. 2015. Seedling production in the industrially important agarophyte Gracilaria dura (Gracilariales, Rhodophyta). Journal of Applied Phycology, 27 (4): 1 541–1 548.CrossRefGoogle Scholar
  33. Smit A J. 2004. Medicinal and pharmaceutical uses of seaweed natural products: a review. Journal of Applied Phycology, 16 (4): 245–262.CrossRefGoogle Scholar
  34. Tang Z X. 2012. Preparation, Purification and Characterization of Agrase from Paenibacillus sp. Zhejiang University of Technology, Hangzhou, Zhejiang, China. (in Chinese with English abstract)Google Scholar
  35. Wang S J. 1994. Seaweed Biotechnology. Shanghai Science and Technology Press, Shanghai, China. p.49–60. (in Chinese)Google Scholar
  36. Wang Z X, Sui Z H, Hu Y Y, Zhang S, Pan Y L, Ju H R. 2014. A comparison of different Gracilariopsis lemaneiformis (Rhodophyta) parts in biochemical characteristics, protoplast formation and regeneration. Journal of Ocean University of China, 13 (4): 671–676.CrossRefGoogle Scholar
  37. Yan X H, Wang S J. 1993. Regeneration of whole plants from Gracilaria asiatica Chang et Xia protoplasts (Gracilariaceae, Rhodophyta). Hydrobiologia, 260 (1): 429–436.CrossRefGoogle Scholar
  38. Yeong H Y, Khalid N, Phang S M. 2008. Protoplast isolation and regeneration from Gracilaria changii (Gracilariales, Rhodophyta). Journal of Applied Phycology, 20 (5): 641–651.CrossRefGoogle Scholar
  39. Zablackis E, Vreeland V, Kloareg B. 1993. Isolation of protoplasts from Kappaphycus alvarezii var. tambalang (Rhodophyta) and secretion of i–carrageenan fragments by cultured cells. Journal of Experimental Botany, 44 (9): 1 515–1 522.CrossRefGoogle Scholar
  40. Zemke–White W L, Ohno M. 1999. World seaweed utilisation: an end–of–century summary. Journal of Applied Phycology, 11 (4): 369–376.CrossRefGoogle Scholar
  41. Zhang S, Liu C, Jin Y M, Chi S, Tang X M, Chen F X, Fang X, Liu T. 2014. Studies on the isolation and culture of protoplasts from Kappaphycus alvarezii. Acta Oceanologica Sinica, 33 (10): 114–123.CrossRefGoogle Scholar
  42. Zhao Y, Zhang N, Li B W, Huang Q, Chen Y X. 2005. Comparison on activities of cytodern hydrolase of seaweed from three species of gastropoda. Journal of Xiamen University ( Natural Science ), 44 (2): 276–278. (in Chinese with English abstract)Google Scholar
  43. Zhong Z H, Huang Z J, Chen W Z. 2014. Effects of various environmental factors on growth and biochemical components of Gracilaria bailinae. Progress in fishery sciences, 35 (3): 98–104. (in Chinese with English abstract)Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Haihong Chen (陈海红)
    • 1
  • Weizhou Chen (陈伟洲)
    • 1
    Email author
  • Jingyi Shi (石经仪)
    • 1
  • Zepan Chen (陈泽攀)
    • 1
  • Yi Zhang (张毅)
    • 1
  1. 1.Marine Biology Institution, Key Laboratory of Marine Biotechnology of Guangdong ProvinceShantou UniversityShantouChina

Personalised recommendations