Journal of Oceanology and Limnology

, Volume 36, Issue 6, pp 2202–2215 | Cite as

A re-investigation of the bloom-forming unarmored dinoflagellate Karenia longicanalis (syn. Karenia umbella ) from Chinese coastal waters

  • Jianyan Wang (王建艳)
  • Jingyi Cen (岑竞仪)
  • Si Li (李思)
  • Songhui Lü (吕颂辉)Email author
  • Øjvind Moestrup
  • Kin-Ka Chan (陈健嘉)
  • Tao Jiang (江涛)
  • Xiangdong Lei (雷向东)


The dinoflagellate genus Karenia is known for recurrent harmful blooms worldwide. However, species diversity of the genus is generally overlooked owing to the difficulty of identifying small unarmored dinoflagellates. We have established four clonal cultures of Karenia longicanalis isolated from the type locality, Hong Kong harbor (strain HK01) and other three locations along the Chinese coasts (strains YB01, DT01, and NJ01). The morphology of the strain was studied by light and scanning electron microscopy (LM and SEM) and the pigment composition analyzed by high-performance liquid chromatography. We provide the first molecular data of K. longicanalis based on the large subunit (LSU) rRNA gene sequence and internal transcribed spacer (ITS). The four strains showed identical LSU rDNA sequences with a similarity of 99.4% to the holotype of Karenia umbella (strain KUTN05) from Australia. In the ITS phylogeny, the sequence of K. umbella branched between the Chinese strains of K. longicanalis. A careful comparison of the morphology of K. longicanalis and K. umbella reveals the similarity in the diagnostic characters. Differences may appear due to the sample treatment for SEM. We conclude that K. umbella is a junior synonym of K. longicanalis.


harmful algal blooms (HABs) phytoplankton morphology phylogeny large subunit (LSU) rRNA internal transcribed spacer (ITS) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We sincerely thank Dr. GUAN Wanchun of Wenzhou Medical University for assistance in the field sample collection. Special appreciation is expressed to Dr. LUO Zhaohe of the Third Institute of Oceanography, the State Oceanic Administration for helpful discussions regarding the SEM preparation. We would also like to thank XIA Xiaofei of Beijing Museum of Natural History for his support during SEM photography.


  1. Al–Kandari M A, Highfield A C, Hall M J, Hayes P, Schroeder D C. 2011. Molecular tools separate harmful algal bloom species, Karenia mikimotoi, from different geographical regions into distinct sub–groups. Harmful Algae, 2011, 10 (6): 636–643.CrossRefGoogle Scholar
  2. Bergholtz T, Daugbjerg N, Moestrup Ø, Fernández–Tejedor M. 2005. On the identity of Karlodinium veneficum and description of Karlodinium armiger sp. nov. (Dinophyceae), based on light and electron microscopy, nuclear–encoded LSU rDNA, and pigment composition. Journal of Phycology, 42 (1): 170–193.CrossRefGoogle Scholar
  3. Botes L, Sym S D, Pitcher G C. 2003. Karenia cristata sp. nov. and Karenia bicuneiformis sp. nov. (Gymnodiniales, Dinophyceae): two new Karenia species from the South African coast. Phycologia, 42 (6): 563–571.CrossRefGoogle Scholar
  4. Brand L E, Campbell L, Bresnan E. 2012. Karenia: the biology and ecology of a toxic genus. Harmful Algae, 14 (1): 156–178.CrossRefGoogle Scholar
  5. Chang F H, Charleston W A G, McKenna P B, Clowes C D, Wilson G J, Broady P A. 2012. Phylum Myzozoa: dinoflagellates, perkinsids, ellobiopsids, sporozoans. I n: Gordon D P Ed. New Zealand inventory of biodiversity: Vol. 3: Kingdoms Bacteria, Protozoa, Chromista, Plantae, Fungi. Canterbury University Press, Christchurch, New Zealand. p.175–216.Google Scholar
  6. Chang F H. 1999. Gymnodinium brevisulcatum sp. nov. (Gymnodiniales, Dinophyceae), a new species isolated from the 1998 summer toxic bloom in Wellington Harbour, New Zealand. Phycologia, 38 (5): 377–384.CrossRefGoogle Scholar
  7. Connell L B. 2000. Nuclear ITS region of the alga Heterosigma akashiwo (Chromophyta: Raphidophyceae) is identical in isolates from Atlantic and Pacific basins. Marine Biology, 136 (6): 953–960.CrossRefGoogle Scholar
  8. Daugbjerg N, Hansen G, Larsen J, Moestrup Ø. 2000. Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia, 39 (4): 302–317.CrossRefGoogle Scholar
  9. de Salas M F, Bolch C J S, Botes L, Nash G, Wright S W, Hallegraeff G M. 2003. Takayama gen. nov. (Gymnodiniales, Dinophyceae), a new genus of unarmored dinoflagellates with sigmoid apical grooves, including the description of two new species. Journal of Phycology, 39 (6): 1 233–1 246.CrossRefGoogle Scholar
  10. de Salas M F, Bolch C J S, Hallegraeff G M. 2004a. Karenia umbella sp. nov. (Gymnodiniales, Dinophyceae), a new potentially ichthyotoxic dinoflagellate species from Tasmania, Australia. Phycologia, 43 (2): 166–175.CrossRefGoogle Scholar
  11. de Salas M F, Bolch C J S, Hallegraeff G M. 2004b. Karenia asterichroma sp. nov. (Gymnodiniales, Dinophyceae), a new dinoflagellate species associated with finfish aquaculture mortalities in Tasmania, Australia. Phycologia, 43 (5): 624–631.CrossRefGoogle Scholar
  12. de Salas M F, Laza–Martínez A, Hallegraeff G M. 2008. Novel unarmored dinoflagellates from the toxigenic family Kareniaceae (Gymnodiales): five new species of Karlodinium and one new Takayama from the Australian sector of the Southern Ocean. Journal of Phycology, 44 (1): 241–257.CrossRefGoogle Scholar
  13. de Salas M F, Rhodes L L, Mackenzie L A, Adamson J E. 2005. Gymnodinoid genera Karenia and Takayama (Dinophyceae) in New Zealand coastal waters. New Zealand Journal of Marine and Freshwater Research, 39 (1): 135–139.CrossRefGoogle Scholar
  14. Fowler N, Tomas C, Baden D, Campbell L, Bourdelais A. 2015. Chemical analysis of Karenia papilionacea. Toxicon, 101: 85–91.CrossRefGoogle Scholar
  15. Garcés E, Fernandez M, Penna A, Van Lenning K, Gutierrez A, Camp J, Zapata M. 2006. Characterization of NW Mediterranean Karlodinium spp. (Dinophyceae) strains using morphological, molecular, chemical, and physiological methodologies. Journal of Phycology, 42 (5): 1 096–1 112.CrossRefGoogle Scholar
  16. Gómez F, Nagahama Y, Takayama H, Furuya K. 2005. Is Karenia a synonym of Asterodinium–Brachidinium (Gymnodiniales, Dinophyceae)? Acta Botanica Croatica, 64 (2): 263–274.Google Scholar
  17. Gómez F. 2012. A checklist and classification of living dinoflagellates (Dinoflagellata, Alveolata). CICIMAR Océanides, 27 (1): 65–140.Google Scholar
  18. Gu H F, Luo Z H, Zhang X D, Fang Q. 2013. Morphology, ultrastructure and phylogeny of Takayama xiamenensis sp. nov. (Gymnodiniales, Dinophyceae) from the East China Sea. Phycologia, 52 (3): 256–265.CrossRefGoogle Scholar
  19. Gu H F. 2007. Resting cysts, life cycle and phylogenetic analysis of typical algae from southeastern China Sea. Ocean University of China, Qingdao, China. (in Chinese with English abstract)Google Scholar
  20. Guillard R R L, Hargraves P E. 1993. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia, 32 (3): 234–236.CrossRefGoogle Scholar
  21. Hansen G, Daugbjerg N, Henriksen P. 2000. Comparative study of Gymnodinium mikimotoi and Gymnodinium aureolum, comb. nov. (= Gyrodinium aureolum ) based on morphology, pigment composition, and molecular data. Journal of Phycology, 36 (2): 394–410.CrossRefGoogle Scholar
  22. Haywood A J, Steidinger K A, Truby E W, Bergquist P R, Bergquist P L, Adamson J, Mackenzie L. 2004. Comparative morphology and molecular phylogenetic analysis of three new species of the genus Karenia (Dinophyceae) from New Zealand. Journal of Phycology, 40 (1): 165–179.CrossRefGoogle Scholar
  23. Henrichs D W, Sosik H M, Olson R J, Campbell L. 2011. Phylogenetic analysis of Brachidinium capitatum (Dinophyceae) from the Gulf of Mexico indicates membership in the Kareniaceae. Journal of Phycology, 47 (2): 366–374.CrossRefGoogle Scholar
  24. Hoagland P, Jin D, Polansky L Y, Kirkpatrick B, Kirkpatrick G, Fleming L E, Reich A, Watkins S M, Ullmann S G, Backer L C. 2009. The costs of respiratory illnesses arising from Florida Gulf Coast Karenia brevis blooms. Environmental Health Perspectives, 117 (8): 1 239–1 243.CrossRefGoogle Scholar
  25. Holland P T, Shi F, Satake M, Hamamoto Y, Ito E, Beuzenberg V, McNabb P, Munday R, Briggs L, Truman P, Gooneratne R, Edwards P, Pascal S W. 2012. Novel toxins produced by the dinoflagellate Karenia brevisulcata. Harmful Algae, 13 (1): 47–57.CrossRefGoogle Scholar
  26. Kempton J W, Lewitus A J, Deeds J R, Law J M, Place A R. 2002. Toxicity of Karlodinium micrum (Dinophyceae) associated with a fish kill in a South Carolina brackish retention pond. Harmful Algae, 1 (2): 233–241.CrossRefGoogle Scholar
  27. Law P C, LEE Y K. 2013. Harmful Marine Microalgae in Hong Kong. Agriculture, Fisheries and Conservation Department. Hong Kong, China. p. 67–77. http://www. Scholar
  28. Lin Y Y, Risk M, Ray S M, Van Engen D, Clardy J, Clardy J, James J C, Nakanishi K. 1981. Isolation and structure of brevetoxin B from the “red tide” dinoflagellate Ptychodiscus brevis ( Gymnodinium breve ). Journal of the American Chemical Society, 103 (22): 6 773–6 775.CrossRefGoogle Scholar
  29. Litaker R W, Vandersea M W, Kibler S R, Reece K S, Stokes N A, Steidinger K A, Millie D F, Bendis B J, Pigg R J, Tester P A. 2003. Identification of P fiesteria piscicida (Dinophyceae) and P fiesteria–like organisms using internal transcribed spacer–specific PCR assays. Journal of Phycology, 39 (4): 754–761.CrossRefGoogle Scholar
  30. Liu R Y. 2008. Checklist of Marine Biota of China Seas. Science Press, Beijing, China. p.177. (in Chinese)Google Scholar
  31. Miles C O, Wilkins A L, Stirling D J, MacKenzie A L. 2003. Gymnodimine C, an isomer of gymnodimine B, from Karenia selliformis. Journal of Agricultural and Food Chemistry, 51 (16): 4 838–4 840.CrossRefGoogle Scholar
  32. Mooney B D, Nichols P D, De Salas M F, Hallegraeff G M. 2007. Lipid, fatty acid, and sterolcomposition of eight species of Kareniaceae (Dinophyta): chemotaxonomy and putative lipid phycotoxins. Journal of Phycology, 43 (1): 101–111.CrossRefGoogle Scholar
  33. Naar J P, Flewelling L J, Lenzi A, Abbott J P, Granholm A, Jacocks H M, Gannon D, Henry M, Pierce R, Baden D G, Wolny J, Landsberg J H. 2007. Brevetoxins, like ciguatoxins, are potent ichthyotoxic neurotoxins that accumulate in fish. Toxicon, 50 (5): 707–723.CrossRefGoogle Scholar
  34. Nézan E, Siano R, Boulben S, Six C, Bilien G, Chèze K, Duval A, Le Panse S, Quéré J, Chomérat N. 2014. Genetic diversity of the harmful family Kareniaceae (Gymnodiniales, Dinophyceae) in France, with the description of Karlodinium gentienii sp. nov.: a new potentially toxic dinoflagellate. Harmful Algae, 40 (40): 75–91.CrossRefGoogle Scholar
  35. Nunn G B, Theisen B F, Christensen B, Arctander P. 1996. Simplicity–correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda. Journal of Molecular Evolution, 42 (2): 211–223.CrossRefGoogle Scholar
  36. Omura T, Iwataki M, Borja V M, Takayama H, Fukuyo Y. 2012. Marine Phytoplankton of the Western Pacific. Kouseisha Kouseikaku Company, Tokyo, Japan. p.73.Google Scholar
  37. Reñé A, Camp J, Garcés E. 2015. Diversity and phylogeny of Gymnodiniales (Dinophyceae) from the NW Mediterranean Sea revealed by a morphological and molecular approach. Protist, 166 (2): 234–263.CrossRefGoogle Scholar
  38. Ronquist F, Huelsenbeck J P. 2003. MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics, 19 (12): 1 572–1 574.CrossRefGoogle Scholar
  39. Satake M, Shoji M, Oshima Y, Naoki H, Fujita T, Yasumoto T. 2002. Gymnocin–A, a cytotoxic polyether from the notorious red tide dinoflagellate, Gymnodinium mikimotoi. Tetrahedron Letters, 43 (33): 5 829–5 832.CrossRefGoogle Scholar
  40. Satake M, Tanaka Y, Ishikura Y, Oshima Y, Naoki H, Yasumoto T. 2005. Gymnocin–B with the largest contiguous polyether rings from the red tide dinoflagellate, Karenia (formerly Gymnodinium ) mikimotoi. Tetrahedron Letters, 46 (20): 3 537–3 540.CrossRefGoogle Scholar
  41. Scholin C A, Herzog M, Sogin M, Anderson D A. 1994. Identification of group–and strain–specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. Journal of Phycology, 30 (6): 999–1 011.Google Scholar
  42. Scorzetti G, Brand L E, Hitchcock G L, Rein K S, Sinigalliano C D, Fell J W. 2009. Multiple simultaneous detection of Harmful Algal Blooms (HABs) through a high throughput bead array technology, with potential use in phytoplankton community analysis. Harmful Algae, 8 (2): 196–211.CrossRefGoogle Scholar
  43. Seki T, Satake M, Mackenzie L, Kaspar H F, Yasumoto T. 1995. Gymnodimine, a new marine toxin of unprecedented structure isolated from New Zealand oysters and the dinoflagellate, Gymnodinium sp. Tetrahedron Letters, 36 (39): 7 093–7 096.CrossRefGoogle Scholar
  44. Shimizu Y, Chou H N, Bando H, Van Duyne G, Clardy J. 1986. Structure of brevetoxin A (GB–1 toxin), the most potent toxin in the Florida red tide organism Gymnodinium breve ( Ptychodiscus brevis ). Journal of the American Chemical Society, 108 (3): 514–515.CrossRefGoogle Scholar
  45. Siano R, Kooistra W H C F, Montresor M, Zingone A. 2009. Unarmoured and thin–walled dinoflagellates from the Gulf of Naples, with the description of Woloszynskia cincta sp. nov. (Dinophyceae, Suessiales). Phycologia, 48 (1): 44–65.CrossRefGoogle Scholar
  46. Stern R F, Andersen R A, Jameson I, Küpper F C, Coffroth M A, Vaulot D, Le Gall F, Véron B, Brand J J, Skelton H, Kasai F, Lilly E L, Keeling P J. 2012. Evaluating the ribosomal internal transcribed spacer (ITS) as a candidate dinoflagellate barcode marker. PLoS One, 7 (8): e42780.CrossRefGoogle Scholar
  47. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30 (12): 2 725–2 729.CrossRefGoogle Scholar
  48. Tester P A, Turner J T, Shea D. 2000. Vectorial transport of toxins from the dinoflagellate Gymnodinium breve through copepods to fish. Journal of Plankton Research, 22 (1): 47–61.CrossRefGoogle Scholar
  49. Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. 1997. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25 (24): 4 876–4 882.CrossRefGoogle Scholar
  50. White T J, Bruns T D, Lee S B, Taylor J W. 1990. Amplification and direct sequencing of fungal ribosomal DNA for phylogenetics. In: Innis M A, Gelfand D H, Sninsky J J, White T J eds. PCR Protocols: A Guide to the Method and Applications. Academic Press, New York, USA. p.315–322.Google Scholar
  51. Yang Z B, Hodgkiss I J, Hansen G. 2001. Karenia longicanalis sp. nov. (Dinophyceae): a new bloom–forming species isolated from Hong Kong, May1998. Botanica Marina, 44 (1): 67–74.CrossRefGoogle Scholar
  52. Yang Z B, Takayama H, Matsuoka K, Hodgkiss I J. 2000. Karenia digitata sp. nov. (Gymnodiniales, Dinophyceae), a new harmful algal bloom species from the coastal waters of west Japan and Hong Kong. Phycologia, 39 (6): 463–470.CrossRefGoogle Scholar
  53. Zapata M, Rodríguez F, Garrido J L. 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C 8 column and pyridine–containing mobile phases. Marine Ecology Progress Series, 195 (3): 29–45.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jianyan Wang (王建艳)
    • 1
  • Jingyi Cen (岑竞仪)
    • 2
    • 3
  • Si Li (李思)
    • 2
    • 3
  • Songhui Lü (吕颂辉)
    • 2
    • 3
    Email author
  • Øjvind Moestrup
    • 4
  • Kin-Ka Chan (陈健嘉)
    • 5
  • Tao Jiang (江涛)
    • 6
  • Xiangdong Lei (雷向东)
    • 7
  1. 1.Department of Science ResearchBeijing Museum of Natural HistoryBeijingChina
  2. 2.College of Life Science and TechnologyJinan UniversityGuangzhouChina
  3. 3.Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education InstitutesJinan UniversityGuangzhouChina
  4. 4.Marine Biological Section, Department of Biology, University of CopenhagenUniversitetsparken 4Copenhagen ØDenmark
  5. 5.School of Science & TechnologyOpen University of Hong KongKowloon, Hong KongChina
  6. 6.Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
  7. 7.Wenzhou Marine Environmental Monitoring Center StationState Oceanic AdministrationWenzhouChina

Personalised recommendations