Journal of Oceanology and Limnology

, Volume 36, Issue 6, pp 2033–2049 | Cite as

Taxonomic and metabolic shifts in the Coorong bacterial metagenome driven by salinity and external inputs

  • Kelly NewtonEmail author
  • Thomas C. Jeffries
  • Renee J. Smith
  • Justin R. Seymour
  • Laurent Seuront
  • James G. Mitchell
Special Issue on Salt Lakes: From the 13th International Conference on Salt Lake Research Ulan-Ude, 20–25 August 2017 Guest editors: Aharon OREN, DENG Tianlong, Nikolai V. SHADRIN, ZHENG Mianping, Egor S. ZADEREEV


The Coorong estuary lies at the terminus of Australia’s largest river system, the Murray-Darling; both are strongly influenced by human activities; including farming and extensive flow modification. Metagenomic approaches were used to determine the planktonic bacterial community composition and potential metabolic function at two extremes in the Coorong, the river mouth which exhibits marine-like salinity, and the hypersaline upper-reaches of the estuary. Significant shifts in taxa and metabolic function were seen between the two sites. The river mouth exhibited an increase in abundance of Rhodobacteriaceae and Alteromonadaceae; families readily able to adapt to change in nutrient conditions; and the potentially pathogenic families Brucellaceae, Enterobacteriaceae and Vibrionaceae. Metabolisms over-represented include motility and chemotaxis, RNA metabolism and membrane transport, all of which are involved in actively searching for and obtaining nutrients. Also over-represented were metabolisms involved in population succession and stress response. An over-representation of taxa and metabolisms indicative of environmental change is reflective of anthropogenically affected riverine input. In the hypersaline upper reaches of the estuary, the halophilic family Ectothiorhodospiraceae was over-represented, as were the families Flavobacteriaceae, Cytophagaceae and Nocardioidaceae, members of which are able to survive over a wide salinity range. Metabolisms over-represented here were reflective of increased bacterial growth, characteristic of hypersaline environments, and included DNA metabolism, nucleotide and nucleoside synthesis and cell cycle. Coorong metagenomes clustered taxonomically and metabolically with other planktonic metagenomes, but remained an outlier of this group with only 71% and 84% similarity, respectively. This indicates that the Coorong exhibits a unique planktonic bacterial community that is influenced by riverine input at the river mouth and salinity in the upper-reaches.


hypersaline estuary bacteria taxonomy metabolic potential 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge B. Roudnew and T. Lavery for informative discussions, A. Burley and E. Alvino for editorial assistance. We sincerely thank A. Fitch from the School of Biological Sciences, Flinders University for technical support and guidance during laboratory work and S. Bailey and E. Ng from the Flow Cytometry Unit of the Flinders Medical Centre for providing technical support during flow cytometry sessions. We would like to especially thank the two anonymous reviewers whose comments and insights improved this manuscript. We also thank the Department of Environment and Natural Resources (DENR) for allowing us access to the Coorong National Park (permit number G25583-2). This research was supported by the Australian Research Council and by Flinders University. K. Newton was in recipient of a Flinders University Research Scholarship (FURS) at the time the research was undertaken.


  1. Allers E, Gómez–Consarnau L, Pinhassi J, Gasol J M, Šimek K, Pernthaler J. 2007. Response of Alteromonadaceae and Rhodobacteriaceae to glucose and phosphorus manipulation in marine mesocosms. Environ. Microbiol., 9 (10): 2 417–2 429.Google Scholar
  2. Alonso–Sáez L, Arístegui J, Pinhassi J, Gómez–Consarnau L, González J M, Vaqué D, Agustí S, Gasol J M. 2007. Bacterial assemblage structure and carbon metabolism along a productivity gradient in the NE Atlantic Ocean. Aquat. Microb. Ecol., 46 (1): 43–53.Google Scholar
  3. Ayub N D, Pettinari M J, Ruiz J A, López N I. 2004. A polyhydroxybutyrate–producing Pseudomonas sp. Isolated from Antarctic environments with high stress resistance. Curr. Microbiol., 49 (3): 170–174.Google Scholar
  4. Azam F, Malfatti F. 2007. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol., 5 (10): 782–791.Google Scholar
  5. Barillé–Boyer A L, Barillé L, Massé H, Razet D, Héral M. 2003. Correction for particulate organic matter as estimated by loss on ignition in estuarine ecosystems. Estuar. Coast. Shelf Sci., 58 (1): 147–153.Google Scholar
  6. Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B., 57 (1): 289–300.Google Scholar
  7. Benlloch S, López–López A, Casamayor E O, Øvreås L, Goddard V, Daae F L, Smerdon G, Massana R, Joint I, Thingstad F, Pedrós–Alió C, Rodríguez–Valera F. 2002. Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ. Microbiol., 4 (6): 349–360.Google Scholar
  8. Biers E J, Sun S L, Howard E C. 2009. Prokaryotic genomes and diversity in surface ocean waters: Interrogating the Global Ocean Sampling metagenome. Appl. Environ. Microbiol., 75 (7): 2 221–2 229.Google Scholar
  9. Blackburn N, Fenchel T, Mitchell J G. 1998. Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science, 282 (5397): 2 254–2 256.Google Scholar
  10. Bouvier T C, del Giorgio P A. 2002. Compositional changes in free–living bacterial communities along a salinity gradient in two temperate estuaries. Limnol. Oceanogr., 47 (2): 453–470.Google Scholar
  11. Bowman J P, Nichols D S. 2005. Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia. Int. J. Syst. Evol. Microbiol., 55 (4): 1 471–1 486.Google Scholar
  12. Brindefalk B, Ettema T J G, Viklund J, Thollesson M, Andersson S G E. 2011. A phylometagenomic exploration of oceanic Alphaproteobacteria reveals mitochondrial relatives unrelated to the SAR11 clade. PLoS One, 6 (9): e24457.Google Scholar
  13. Brussaard C P D. 2004. Optimization of procedures for counting viruses by flow cytometry. Appl. Environ. Microbiol., 70 (3): 1 506–1 513.Google Scholar
  14. Bull A T, Stach J E M, Ward A C, Goodfellow M. 2005. Marine actinobacteria: perspectives, challenges, future directions. Antonie van Leeuwenhoek, 87 (1): 65–79.Google Scholar
  15. Cabiscol E, Tamarit J, Ros J. 2000. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol., 3 (1): 3–8.Google Scholar
  16. Chapelle F H, Lovley D R. 1990. Rates of microbial metabolism in deep coastal plain aquifers. Appl. Environ. Microbiol., 56 (6): 1 865–1 874.Google Scholar
  17. Clarke K R, Gorley R N. 2006. PRIMER v6: User Manual/Tutorial. PRIMER–E, Plymouth, UK.Google Scholar
  18. Clarke K R. 1993. Non–parametric multivariate analyses of changes in community structure. Austr. J. Ecol., 18 (1): 117–143.Google Scholar
  19. Cottrell M T, Waidner L A, Yu L Y, Kirchman D L. 2005. Bacterial diversity of metagenomic and PCR libraries from the Delaware River. Environ. Microbiol., 7 (12): 1 883–1 895.Google Scholar
  20. Cugley J, Shukla C, Sarneckis K. 2002. Ambient Water Quality Monitoring of the River Murray 1990–199. Report No.1. Environment Protection Agency South Australia, Adelaide. 103p.Google Scholar
  21. DeLong E F, Preston C M, Mincer T, Rich V, Hallam S J, Frigaard N–U, Martinez A, Sullivan M B, Edwards R, Brito B R, Chisholm S W, Karl D M. 2006. Community genomics among stratified microbial assemblages in the ocean’s interior. Science, 311 (5760): 496–503.Google Scholar
  22. Dinsdale E A, Pantos O, Smriga S, Edwards R A, Angly F, Wegley L, Hatay M, Hall D, Brown E, Haynes M, Krause L, Sala E, Sandin S A, Thurber R V, Willis B L, Azam F, Knowlton N, Rohwer F. 2008. Microbial ecology of four coral atolls in the Northern Line Islands. PLoS One, 3 (2): e1584.Google Scholar
  23. Dobson S J, Colwell R R, McMeekin T A, Franzmann P D. 1993. Direct sequencing of the polymerase chain reactionamplified 16S rRNA gene of Flavobacterium gondwanense sp. nov. and Flavobacterium salegens sp. nov., two new species from a hypersaline Antarctic lake. Int. J. Syst. Bacteriol., 43 (1): 77–83.Google Scholar
  24. Edwards R A, Rodriguez–Brito B, Wegley L, Haynes M, Breitbart M, Peterson D M, Saar M O, Alexander S, Alexander E C, Rohwer F. 2006. Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics, 7: 57.Google Scholar
  25. Esteban J A, Salas M, Blanco L. 1993. Fidelity of ϕ 29 DNA Polymerase. J. Biol. Chem., 268 (4): 2 719–2 726.Google Scholar
  26. Fisher W D. 1958. On grouping for maximum homogeneity. J. Am. Statist. Assoc., 53 (284): 789–798.Google Scholar
  27. Ford P W. 2007. Biogeochemistry of the Coorong. Review and identification of future research requirements. CSIRO Water for a Healthy Country National Research Flagship. CSIRO, Canberra. 23p.Google Scholar
  28. Garrity G M, Bell J A, Lilburn T. 2005. Family III, Brucellaceae breed, Murray and smith 1957, 394AL. In: Brenner D J, Krieg N R, Staley J T, Garrity G M eds. 2nd edn. Bergey’s Manual of Systematic Bacteriology. Springer, New York. p.370–386.Google Scholar
  29. Gasol J M, del Giorgio P A. 2000. Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci. Mar., 64 (2): 197–224.Google Scholar
  30. Geddes M C. 2005. The ecological health of the North and South Lagoons of the Coorong in July 2004. Report Prepared for the Department of Water, Land and Biodiversity Conservation. SARDI Aquatic Sciences Publication Number RD03/0272–2. South Australian Research and Development Institute (Aquatic Sciences), Adelaide, 29pp.Google Scholar
  31. Ghai R, Pašić L, Fernández A B, Martin–Cuadrado A B, Mizuno C M, McMahon K D, Papke R T, Stepanauskas R, Rodriguez–Brito B, Rohwer F, Sánchez–Porro C, Ventosa A, Rodríguez–Valera F. 2011. New abundant microbial groups in aquatic hypersaline environments. Sci. Rep., 1: 135.Google Scholar
  32. Guixa–Boixareu N, Calderón–Paz J I, Heldal M, Bratbak G, Pedrós–Alió C. 1996. Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat. Microb. Ecol., 11 (3): 215–227.Google Scholar
  33. Han S K, Nedashkovskaya O I, Mikhailov V V, Kim S B, Bae K S. 2003. Salinibacterium amurskyense gen. nov., sp. nov., a novel genus of the family Microbacteriaceae from the marine environment. Int. J. Syst. Evol. Microbiol., 53 (6): 2 061–2 066.Google Scholar
  34. Henriques I S, Alves A, Tacão M, Almeida A, Cunha Â, Correia A. 2006. Seasonal and spatial variability of free–living bacterial community composition along an estuarine gradient (Ria de Aveiro, Portugal). Estuar. Coast. Shelf Sci., 68 (1–2): 139–148.Google Scholar
  35. Herlemann D P, Labrenz M, Jürgens K, Bertilsson S, Waniek J J, Andersson A F. 2011. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J., 5 (10): 1 571–1 579.Google Scholar
  36. Hill D, Owens W, Tchounwou P. 2005. Impact of animal waste application on runoffwater quality in field experimental plots. Int. J. Environ. Res. Public Health, 2 (2): 314–321.Google Scholar
  37. Imhoff J F, Süling J. 1996. The phylogenetic relationship among Ectothiorhodospiraceae: a reevaluation of their taxonomy on the basis of 16S rDNA analyses. Arch. Microbiol., 165 (2): 106–113.Google Scholar
  38. Ivanova E P, Flavier S, Christen R. 2004. Phylogenetic relationships among marine Alteromonas–like Proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int. J. Syst. Evol. Microbiol., 54 (5): 1 773–1 788.Google Scholar
  39. Jeffries T C, Seymour J R, Gilbert J A, Dinsdale E A, Newton K, Leterme S S C, Roudnew B, Smith R J, Seuront L, Mitchell J G. 2011. Substrate type determines metagenomic profiles from diverse chemical habitats. PLoS One, 6 (9): e25173.Google Scholar
  40. Jeffries T C, Seymour J R, Newton K, Smith R J, Seuront L, Mitchell J G. 2012. Increases in the abundance of microbial genes encoding halotolerance and photosynthesis along a sediment salinity gradient. Biogeosciences, 9 (2): 815–825.Google Scholar
  41. Jolly I D, Williamson D R, Gilfedder M, Walker G R, Morton R, Robinson G, Jones H, Zhang L, Dowling T I, Dyce P, Nathan R J, Nandakumar N, Clarke R, McNeill V. 2001. Historical stream salinity trends and catchment salt balances in the Murray–Darling Basin, Australia. Mar. Freshw. Res., 52 (1): 53–63.Google Scholar
  42. Jones K, Betaieb M. 1986. The dispersal of nitrogen–fixing enterobacteriaceae from sewage in the waters and sediments of Morecambe Bay, UK. Colloque International de Bacteriologie Marine. IFREMER, É ditions du CNRS, Brest, France. p.525–531.Google Scholar
  43. Kan J J, Suzuki M T, Wang K, Evans S E, Chen F. 2007. High temporal but low spatial heterogeneity of bacterioplankton in the Chesapeake Bay. Appl. Environ. Microbiol., 73 (21): 6 776–6 789.Google Scholar
  44. Kingsford R T, Walker K F, Lester R E, Young W J, Fairweather P G, Sammut J, Geddes M C. 2011. A Ramsar wetland in crisis—the Coorong, Lower Lakes and Murray Mouth, Australia. Mar. Freshw. Res., 62 (3): 255–265.Google Scholar
  45. Kiørboe T, Jackson G A. 2001. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria. Limnol. Oceanogr., 46 (6): 1 309–1 318.Google Scholar
  46. Klatt P, Lamas S. 2000. Regulation of protein function by S–glutathiolation in response to oxidative and nitrosative stress. Eur. J. Biochem., 267 (16): 4 928–4 944.Google Scholar
  47. Lamontagne S, McEwan K, Webster I, Ford P, Leaney F, Walker G. 2004. Coorong Lower Lakes and Murray Mouth. Knowledge gaps and knowledge needs for delivering better ecological outcomes. CSIRO Water for a Healthy Country Flagship Report Series. CSIRO, Canberra. 38p.Google Scholar
  48. Lasken R S, Stockwell T B. 2007. Mechanism of chimera formation during the multiple displacement amplification reaction. BMC Biotechnol., 7: 19.Google Scholar
  49. Lee S D, Lee D W, Kim J S. 2008. Nocardioides hwasunensis sp. nov. Int. J. Syst. Evol. Microbiol., 58 (1): 278–281.Google Scholar
  50. Lester R E, Fairweather P G. 2009. Modelling future conditions in the degraded semi–arid estuary of Australia's largest river using ecosystem states. Estuar. Coast. Shelf Sci., 85 (1): 1–11.Google Scholar
  51. Lozupone C A, Knight R. 2007. Global patterns in bacterial diversity. Proc. Natl. Acad. Sci. USA, 104 (27): 11 436–11 440.Google Scholar
  52. Magarvey N A, Keller J M, Bernan V, Dworkin M, Sherman D H. 2004. Isolation and characterization of novel marinederived actinomycete taxa rich in bioactive metabolites. Appl. Environ. Microbiol., 70 (12): 7 520–7 529.Google Scholar
  53. Magurran A E. 2004. Measuring Biological Diversity. Blackwell Science Ltd., Oxford. 264p.Google Scholar
  54. Marie D, Brussaard C P D, Thyrhaug R, Bratbak G, Vaulot D. 1999a. Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl. Environ. Microbiol., 65 (1): 45–52.Google Scholar
  55. Marie D, Partensky F, Vaulot D, Brussaard C. 1999b. Numeration of phytoplankton, bacteria, and viruses in marine samples. Curr. Protoc. Cytometry, 10 (1): 11.11.1–11.11.15.Google Scholar
  56. Meyer F, Paarmann D, D’Souza M, Olson R, Glass E, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards R A. 2008. The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics, 9: 386.Google Scholar
  57. Mincer T J, Fenical W, Jensen P R. 2005. Culture–dependent and culture–independent diversity within the obligate marine actinomycete genus Salinispora. Appl. Environ. Microbiol., 71 (11): 7 019–7 028.Google Scholar
  58. Mitchell J G. 2004. Rank–size analysis and vertical phytoplankton distribution patterns. In: Seuront L, Strutton P G eds. Handbook of Scaling Methods in Aquatic Ecology: Measurement, Analysis, Simulation. CRC Press, Boca Raton. p.257–278.Google Scholar
  59. Mudge S, Moss M. 2008. State of the environment report for South Australia 2008. The State of Our Environment: Environmental Protection Authority, Adelaide. 311p.Google Scholar
  60. Newcombe R G. 1998. Improved confidence intervals for the difference between binomial proportions based on paired data. Statist. Med., 17 (22): 2 635–2 650.Google Scholar
  61. Nieto J J, Fernández–Castillo R, Márquez M C, Ventosa A, Quesada E, Ruiz–Berraquero F. 1989. Survey of metal tolerance in moderately halophilic eubacteria. Appl. Environ. Microbiol., 55 (9): 2 385–2 390.Google Scholar
  62. Nogales B, Lanfranconi M P, Piña–Villalonga J M, Bosch R. 2011. Anthropogenic perturbations in marine microbial communities. FEMS Microbiol. Rev., 35 (2): 275–298.Google Scholar
  63. Overbeek R, Begley T, Butler R M, Choudhuri J V, Chuang H Y, Cohoon M, de Crécy–Lagard V, Diaz N, Disz T, Edwards R, Fonstein R E M, Frank E D, Gerdes S, Glass E M, Goesmann A, Hanson A, Iwata–Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy A C, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch G D, Rodionov D A, Rückert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye Y Z, Zagnitko O, Vonstein V. 2005. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res., 33 (17): 5 691–5 702.Google Scholar
  64. Paez J G, Lin M, Beroukhim R, Lee J C, Zhao X J, Richter D J, Gabriel S, Herman P, Sasaki H, Altshuler D, Li C, Meyerson M, Sellers W R. 2004. Genome coverage and sequence fidelity of ϕ29 polymerase–based multiple strand displacement whole genome amplification. Nucleic Acids Res., 32 (9): e71.Google Scholar
  65. Parks D H, Beiko R G. 2010. Identifying biologically relevant differences between metagenomic communities. Bioinformatics, 26 (6): 715–721.Google Scholar
  66. Pǎsić L, Rodriguez–Mueller B, Martin–Cuadrado A B, Mira A, Rohwer F, Rodriguez–Valera F. 2009. Metagenomic islands of hyperhalophiles: the case of Salinibacter ruber. BMC Genomics, 10: 570.Google Scholar
  67. Pedrós–Alió C, Calderón–Paz J I, MacLean M H, Medina G, Marrasé C, Gasol J M, Guixa–Boixereu N. 2000. The microbial food web along salinity gradients. FEMS Microbiol. Ecol., 32 (2): 143–155.Google Scholar
  68. Pernthaler J. 2005. Predation on prokaryotes in the water column and its ecological implications. Nat. Rev. Microbiol., 3 (7): 537–546.Google Scholar
  69. Persson B C. 1993. Modification of tRNA as a regulatory device. Mol. Microbiol., 8 (6): 1 011–1 016.Google Scholar
  70. Raux E, Schubert H L, Warren M J. 2000. Biosynthesis of cobalamin (vitamin B12): a bacterial conundrum. Cell. Mol. Life Sci., 57 (13–14): 1 880–1 893.Google Scholar
  71. Reen F J, Almagro–Moreno S, Ussery D, Boyd E F. 2006. The genomic code: inferring Vibrionaceae niche specialization. Nat. Rev. Microbiol., 4 (9): 697–704.Google Scholar
  72. Roberts M F. 2005. Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst., 1: 5.Google Scholar
  73. Rodriguez–Brito B, Li L L, Wegley L, Furlan M, Angly F, Breitbart M, Buchanan J, Desnues C, Dinsdale E, Edwards R, Felts B, Haynes M, Liu H, Lipson D, Mahaffy J, Martin–Cuadrado A B, Mira A, Nulton J, Pašić L, Rayhawk S, Rodriguez–Mueller J, Rodriguez–Valera F, Salamon P, Srinagesh S, Thingstad T F, Tran T, Thurber R V, Willner D, Youle M, Rohwer F. 2010. Viral and microbial community dynamics in four aquatic environments. ISME J., 4 (6): 739–751.Google Scholar
  74. Ruiz A, Franco J, Villate F. 1998. Microzooplankton grazing in the Estuary of Mundaka, Spain, and its impact on phytoplankton distribution along the salinity gradient. Aquat. Microb. Ecol., 14 (3): 281–288.Google Scholar
  75. Rusch D B, Halpern A L, Sutton G, Heidelberg K B, Williamson S, Yooseph S, Wu D Y, Eisen J A, Hoffman J M, Remington K, Beeson K, Tran B, Smith H, Baden–Tillson H, Stewart C, Thorpe J, Freeman J, Andrews–Pfannkoch C, Venter J E, Li K, Kravitz S, Heidelberg J F, Utterback T, Rogers Y H, Falcón L I, Souza V, Bonilla–Rosso G, Eguiarte L E, Karl D M, Sathyendranath S, Platt T, Bermingham E, Gallardo V, Tamayo–Castillo G, Ferrari M R, Strausberg R L, Nealson K, Friedman R, Frazier M, Venter J C. 2007. The sorcerer II global ocean sampling expedition: northwest Atlantic through eastern Tropical Pacific. PLoS Biol., 5 (3): e77.Google Scholar
  76. Sarikhan S, Azarbaijani R, Yeganeh L P, Fazeli A S, Amoozegar M A, Salekdeh G H. 2011. Draft genome sequence of Nesterenkonia sp. strain F, isolated from Aran–BidgolSalt Lake in Iran. J. Bacteriol., 193 (19): 5 580.Google Scholar
  77. Schapira M, Buscot M J, Leterme S C, Pollet T, Chapperon C, Seuront L. 2009. Distribution of heterotrophic bacteria and virus–like particles along a salinity gradient in a hypersaline coastal lagoon. Aquat. Microb. Ecol., 54 (2): 171–183.Google Scholar
  78. Seymour J R, Doblin M A, Jeffries T C, Brown M V, Newton K, Ralph P J, Baird M, Mitchell J G. 2012. Contrasting microbial assemblages in adjacent watermasses associated with the East Australian Current. Environ. Microbiol. Rep., 4 (5): 548–555.Google Scholar
  79. Seymour J R, Humphreys W F, Mitchell J G. 2007. Stratification of the microbial community inhabiting an anchialine sinkhole. Aquat. Microb. Ecol., 50 (1): 11–24.Google Scholar
  80. Smith R J, Jeffries T C, Roudnew B, Fitch A J, Seymour J R, Delpin M W, Newton K, Brown M H, Mitchell J G. 2012. Metagenomic comparison of microbial communities inhabiting confined and unconfined aquifer ecosystems. Environ. Microbiol., 14 (1): 240–253.Google Scholar
  81. Stach E M, Bull A T. 2005. Estimating and comparing the diversity of marine actinobacteria. Antonie van Leeuwenhoek, 87 (1): 3–9.Google Scholar
  82. Starr T J, Jones M E, Martinez D. 1957. The production of vitamin B 12–active substances by marine bacteria. Limnol. Oceanogr., 2 (2): 114–119.Google Scholar
  83. Stevens H, Brinkhoff T, Rink B, Vollmers J, Simon M. 2007. Diversity and abundance of Gram positive bacteria in a tidal flat ecosystem. Environ. Microbiol., 9 (7): 1 810–1 822.Google Scholar
  84. Strom S L. 2008. Microbial ecology of ocean biogeochemistry: a community perspective. Science, 320 (5879): 1 043–1 045.Google Scholar
  85. Tamames J, Abellán J, Pignatelli M, Camacho A, Moya A. 2010. Environmental distribution of prokaryotic taxa. BMC Microbiol., 10: 85.Google Scholar
  86. Thurber R V, Haynes M, Breitbart M, Wegley L, Rohwer F. 2009. Laboratory procedures to generate viral metagenomes. Nat. Protocols, 4 (4): 470–483.Google Scholar
  87. Tourova T P, Spiridonova E M, Berg I A, Slobodova N V, Boulygina E S, Sorokin D Y. 2007. Phylogeny and evolution of the family Ectothiorhodospiraceae based on comparison of 16S rRNA, cbbL and nifH gene sequences. Int. J. Syst. Evol. Microbiol., 57 (10): 2 387–2 398.Google Scholar
  88. Webster I T. 2005. An Overview of the Hydrodynamics of the Coorong and Murray Mouth. Technical Report No.#/2005. CSIRO: Water for a Healthy Country National Research Flagship. 33p.Google Scholar
  89. Wu Q L, Zwart G, Schauer M, Kamst–van Agterveld M P, Hahn M W. 2006. Bacterioplankton community composition along a salinity gradient of sixteen highmountain lakes located on the Tibetan Plateau, China. Appl. Environ. Microbiol., 72 (8): 5 478–5 485.Google Scholar
  90. Yilmaz S, Allgaier M, Hugenholtz P. 2010. Multiple displacement amplification compromises quantitative analysis of metagenomes. Nat. Methods, 7 (12): 943–944.Google Scholar
  91. Yokokawa T, Nagata T, Cottrell M T, Kirchman D L. 2004. Growth rate of the major phylogenetic bacterial groups in the Delaware estuary. Limnol. Oceanogr., 49 (5): 1 620–1 629.Google Scholar
  92. Zar J H. 1996. Biostatistical Analysis. Prentice–Hall Inc., Upper Saddle River. 944p.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kelly Newton
    • 1
    Email author
  • Thomas C. Jeffries
    • 1
    • 2
  • Renee J. Smith
    • 1
    • 3
  • Justin R. Seymour
    • 1
    • 4
  • Laurent Seuront
    • 1
    • 5
  • James G. Mitchell
    • 1
  1. 1.School of Biological SciencesFlinders UniversityBedford ParkAustralia
  2. 2.School of Science and HealthWestern Sydney UniversityRichmondAustralia
  3. 3.Flinders Centre for Innovation in CancerFlinders UniversityBedford ParkAustralia
  4. 4.Climate Change ClusterUniversity of Technology SydneySydneyAustralia
  5. 5.Centre National de la Recherche Scientifique, Laboratoire d’Océanologie et de GéosciencesCNRS UMR 8187 LOGWimereuxFrance

Personalised recommendations