Journal of Oceanology and Limnology

, Volume 36, Issue 6, pp 2050–2060 | Cite as

Cue hierarchy in the foraging behaviour of the brackish cladoceran Daphniopsis australis

  • Clayton Leigh McCloud
  • Hasnun Nita Ismail
  • Laurent SeurontEmail author
Special Issue on Salt Lakes: From the 13th International Conference on Salt Lake Research Ulan-Ude, 20–25 August 2017 Guest editors: Aharon OREN, DENG Tianlong, Nikolai V. SHADRIN, ZHENG Mianping, Egor S. ZADEREEV


Zooplankton communities are an essential component of marine and freshwater food webs. However, there is still a relative lack of information on how these organisms behaviourally respond to a range of abiotic and biotic stressors. Specifically, the behaviour of the cladoceran Daphniopsis australis, a species endemic to South-eastern Australian saline lakes and ponds, is still unknown despite its potential role in the structure and function of inland water ecosystems. The swimming behaviour of males, parthenogenetic females and epiphial females was investigated under various conditions and combinations of food and conspecific cues. In the absence of cues, males displayed the most extensive swimming behaviour, exploring all areas of the container, and swimming in a series of relatively straight trajectories. In contrast, females typically exhibited a hop-and-sink motion characterised by the alternation between short bursts of swimming and sinking phases. Both females spent long periods near the bottom of the container, but epiphial females appeared to be more active than parthenogenetic ones that rarely made an excursion in the water column. In the presence of cues, males and females showed abilities to detect infochemicals from food and conspecifics, but exhibited specific behavioural strategies. Males essentially increased their swimming speed in the presence of food and/or conspecific infochemicals, and this increase was independent on the source of the cues, i.e. food, conspecific or a mixture of food and conspecifics. In contrast, females exhibited cue hierarchies that were related to their sexual status. Parthenogenetic females swam faster in the presence of food and a mixture of food and conspecific infochemicals than in the presence of cue from the opposite sex, which did not significantly differ from control observations conducted in the absence of cues. Epiphial females decreased their swimming speed in the presence of cues, with the most significant behavioural answers being driven by sex-related cues.


zooplankton chemical cues sex-specific behaviour 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by an Honours Scholarship from Flinders University to C. McCloud, and an Australian Research Council’s Discovery Projects funding scheme (project DP0664681). Professor Seuront is the recipient of an Australian Professorial Fellowship (project DP0988554). This work is a contribution to the CPER research project CLIMIBIO. The authors thank the French Ministère de l’Enseignement Supérieur et de la Recherche, the Hauts de France Region and the European Funds for Regional Economical Development for their financial support to this project.


  1. Aladin N V. 1991. Salinity tolerance and morphology of the osmoregulation organs in Cladocera with special reference to Cladocera from the Aral Sea. Hydrobiologia, 225 (1): 291–299.CrossRefGoogle Scholar
  2. Aladin N V, Potts W T W. 1995. Osmoregulatory capacity of the Cladocera. J. Comp. Physiol. B., 164 (8): 671–683.CrossRefGoogle Scholar
  3. Banse K. 1995. Zooplankton: pivotal role in the controlof ocean production: I. Biomass and production. ICES J. Mar. Sci., 52 (3–4): 265–277.CrossRefGoogle Scholar
  4. Baylor E R, Smith F E. 1953. The orientation of Cladocera to polarized light. Am. Nat., 87 (833): 97–101.CrossRefGoogle Scholar
  5. Benzie J A H. 2005. The Genus Daphnia (Including Daphniopsis): Anomopoda: Daphniidae (Guides to the Identification of the Microinvertebrates of the Continental Waters of the World). Kenobi Productions, Ghent.Google Scholar
  6. Bledzki L A, Rybak J I. 2016. Freshwater Crustacean Zooplankton of Europe: Cladocera & Copepoda (Calanoida, Cyclopoida) Key to Species Identification, with Notes on Ecology, Distribution, Methods and Introduction to Data Analysis. Springer, New York. 918p.Google Scholar
  7. Bownik A. 2017. Daphnia swimming behaviour as a biomarker in toxicity assessment: a review. Sci. Total Environ., 601–602: 194–205.Google Scholar
  8. Brancelj A, De Meester L, Spaak P. 2012. Cladocera: the Biology of Model Organisms: Proceedings of the Fourth International Symposium on Cladocera, Held in Postojna, Slovenia, 8–1. August 1996. Springer, New York. 303p.Google Scholar
  9. Brewer M C. 1998. Mating behaviours of Daphnia pulicaria, a cyclic parthenogen: comparisons with copepods. Philos. Trans. R oy. Soc. B: Biol. Sci., 353 (1369): 805–815.CrossRefGoogle Scholar
  10. Buskey E J. 1984. Swimming patterns as an indicator of the roles of copepod sensory systems in the recognition of food. Mar. Biol., 79(2): 165–175.CrossRefGoogle Scholar
  11. Campbell C E. 1994. Seasonal zooplankton fauna of salt evaporation basins in South Australia. Austr. J. Mar. Freshw. Res., 45 (2): 199–208.CrossRefGoogle Scholar
  12. Colbourne J K, Wilson C C, Hebert P D N. 2006. The systematics of Australian Daphnia and Daphniopsis (Crustacea: Cladocera): a shared phylogenetic history transformed by habitat–specific rates of evolution. Biol. J. Linn. Soc., 89 (3): 469–488.CrossRefGoogle Scholar
  13. Cowles T J. 2004. Planktonic layers: physical and biological interactions on the small scale. In: Seuront L, Strutton P G eds. Handbook of Scaling Methods in Aquatic Ecology: Measurements, Analysis, Simulation. CRC Press, Boca Raton, FL. p.31–49.Google Scholar
  14. DaS. Ferrã o Filho A, Da Costa S M, Ribeiro M G L, Azevedo S M F O. 2008. Effects of a saxitoxin–producer strain of Cylindrospermopsis raciborskii (cyanobacteria) on the swimming movements of cladocerans. Environ. Toxicol., 23 (2): 161–168.CrossRefGoogle Scholar
  15. Dees N D, Bahar S, Garcia R, Moss F. 2008. Patch exploitation in two dimensions: from Daphnia to simulated foragers. J. Theor. Biol., 252 (1): 69–76.CrossRefGoogle Scholar
  16. Delbare D, Dhert P. 1996. Cladocerans, nematodes and trochophora. In: Laverns P, Sorgeloos P eds. Manual on the Production and Use of Live Food for Aquaculture. Food and Agriculture Organization of United Nation, Rome.Google Scholar
  17. Dodson S I, Frey D G. 2001. Cladocera and other branchiopoda. In: Thorp J H, Covich A P eds. Ecology and Classification of North American Freshwater Invertebrates. 2 nd edn. Academic Press, San Diego. p.723–786.Google Scholar
  18. Dodson S, Ramcharan C. 1991. Size–specific swimming behavior of Daphnia pulex. J. Plankton Res., 13 (6): 1 367–1 379.CrossRefGoogle Scholar
  19. Dusenbery D B. 1992. Sensory Ecology: How Organisms Acquire and Respond to Information. WH Freeman, New York.Google Scholar
  20. Garcia R, Moss F, Nihongi A, Strickler J R, Göller S, Erdmann U, Schimansky–Geier L, Sokolov I M. 2007. Optimal foraging by zooplankton within patches: the case of Daphnia. Mathem. Biosci., 207 (2): 165–188.CrossRefGoogle Scholar
  21. Hamza W, Ruggiu D. 2000. Swimming behaviour of Daphnia galeata × hyalina as a response to algal substances and to opaque colours. Int. Rev. Hydrobiol., 85 (2–3): 157–166.CrossRefGoogle Scholar
  22. Hann B J. 1986. Revision of the genus Daphniopsis Sars, 1903 (Cladocera: Daphniidae) and a description of Daphniopsis chilensis, new species, from South America. J. Crustacean Biol., 6 (2): 246–263.CrossRefGoogle Scholar
  23. Hebert P D, Wilson C C. 2000. Diversity of the genus Daphniopsis in the saline waters of Australia. Can. J. Zool., 78 (5): 794–808.CrossRefGoogle Scholar
  24. Hinow P, Nihongi A, Strickler J R. 2015. Statistical mechanics of zooplankton. PLoS One, 10 (8): e0135258.CrossRefGoogle Scholar
  25. Humphries N E, Weimerskirch H, Queiroz N, Southall E J, Sims D W. 2012. Foraging success of biological Lé vy flights recorded in situ. Proc. Natl. Acad. Sci. U. S. A., 109 (19): 7 169–7 174.CrossRefGoogle Scholar
  26. Ismail H N, Qin J G, Seuront L, Adams M. 2010b. Impacts of male and food density on female performance in the brackish cladoceran Daphniopsis australis. Hydrobiologia, 652 (1): 277–288.CrossRefGoogle Scholar
  27. Ismail H N, Qin J G, Seuront L. 2010a. Thermal and halo tolerance of a brackish cladoceran Daphniopsis australis (Sergeev & Williams). In: Martorino L, Puopolo K eds. New Oceanography Research Developments: Marine Chemistry, Ocean Floor Analyses and Marine Phytoplankton. Nova Science Publisher, New York. p.213–230.Google Scholar
  28. Ismail H N, Qin J G, Seuront L. 2011a. Dietary responses of the brackish cladoceran Daphniopsis australis fed on different algal species. J. Exp. Mar. Biol. Ecol., 409 (1–2): 275–282.CrossRefGoogle Scholar
  29. Ismail H N, Qin J G, Seuront L. 2011b. Regulation of life history in the brackish cladoceran, Daphniopsis australis (Sergeev and Williams, 1985) by temperature and salinity. J. Plankton Res., 33 (5): 763–777.CrossRefGoogle Scholar
  30. Ismail H N, Qin J G, Seuront L. 2011c. The survival and reproductive performance of Daphniopsis australis (Cladocera: Daphniidae) in response to temperature changes. Jurnal Intelek, 6 (1): 70–76.Google Scholar
  31. Kiørboe T. 2008. A Mechanistic Approach to Plankton Ecology. Princeton University Press, Princeton.Google Scholar
  32. La G H, Choi J Y, Chang K H, Jang M H, Joo G J, Kim H W. 2014. Mating behavior of Daphnia: impacts of predation risk, food quantity, and reproductive phase of females. PLoS One, 9 (8): e104545.CrossRefGoogle Scholar
  33. Mergeay J, Declerck S, Verschuren D, De Meester L. 2006. Daphnia community analysis in shallow Kenyan lakes and ponds using dormant eggs in surface sediments. Freshw. Biol., 51 (3): 399–411.CrossRefGoogle Scholar
  34. Nihongi A, Ziarek J J, Nagai T, Uttieri M, Zambianchi E, Strickler J R. 2011. Daphnia pulicaria hijacked by Vibrio cholera: altered swimming behaviour and predation risk implications. In: Kattel G ed. Zooplankton and Phytoplankton: Types, Characteristics and Ecology. Nova Science Publishers, New York. p.181–192.Google Scholar
  35. Nihongi A, Ziarek J J, Uttieri M, Sandulli M, Zambianchi E, Strickler J R. 2016. Behavioural interseasonal adaptations in Daphnia pulicaria (Crustacea: Cladocera) as induced by predation infochemicals. Aquat. Ecol., 50 (4): 667–684.CrossRefGoogle Scholar
  36. O'Keefe T C, Brewer M C, Dodson S I. 1998. Swimming behavior of Daphnia: its role in determining predation risk. J. Plankton Res., 20 (5): 973–984.CrossRefGoogle Scholar
  37. Pyke J H. 1984. Optimal foraging theory: a critical review. Ann. Rev. Ecol. Syst., 15: 523–575.CrossRefGoogle Scholar
  38. Sars G O. 1903. On the crustacean fauna of Central Asia. 2. Cladocera. Ann. Mus. zool. Acad. Sci. St. Petersbourg, 8: 157–194.Google Scholar
  39. Schwartz S S, Hebert P D N. 1987. Breeding system of Daphniopsis ephemeralis: adaptations to a transient environment. Hydrobiologia, 145 (1): 195–200.CrossRefGoogle Scholar
  40. Sergeev V, Williams W D. 1985. Daphniopsis australis nov. sp. (Crustacea: Cladocera), a further daphniid in Australian salt lakes. Hydrobiologia, 120 (2): 119–128.CrossRefGoogle Scholar
  41. Seuront L, Brewer M C, Strickler J R. 2004c. Quantifying zooplankton swimming behavior: the question of scale. In: Seuront L, Strutton P G eds. Handbook of Scaling Methods in Aquatic Ecology: Measurement, Analysis, Simulation. CRC Press, Boca Raton. p.333–359.Google Scholar
  42. Seuront L, Schmitt F G, Brewer M C, Strickler J R, Souissi S. 2004b. From random walk to multifractal random walk in zooplankton swimming behavior. Zool. Stud., 43 (2): 498–510.Google Scholar
  43. Seuront L, Stanley H E. 2014. Anomalous diffusion and multifractality enhance mating encounters in the ocean. Proc. Natl. Acad. Sci. U. S. A., 111 (6): 2 206–2 211.CrossRefGoogle Scholar
  44. Seuront L, Vincent D. 2008. Increased seawater viscosity, Phaeocystis globosa spring bloom and Temora longicornis feeding and swimming behaviours. Mar. Ecol. Progr. Ser., 363: 131–145.CrossRefGoogle Scholar
  45. Seuront L, Yamazaki H, Souissi S. 2004a. Hydrodynamic disturbance and zooplankton swimming behavior. Zool. Stud., 43 (2): 376–387.Google Scholar
  46. Seuront L. 2006. Effect of salinity on the swimming behaviour of the estuarine calanoid copepod Eurytemora affinis. J. Plankton Res., 28 (9): 805–813.CrossRefGoogle Scholar
  47. Seuront L. 2011. Behavioral fractality in marine copepods: endogenous rhythms versus exogenous stressors. Phys. A: Stat. Mech. Appl., 39 0 (2): 250–256.CrossRefGoogle Scholar
  48. Seuront L. 2013. Chemical and hydromechanical components of mate–seeking behaviour in the calanoid copepod Eurytemora affinis. J. Plankton Res., 35 (4): 724–743.CrossRefGoogle Scholar
  49. Seuront L. 2015a. On uses, misuses and potential abuses of fractal analysis in zooplankton behavioral studies: a review, a critique and a few recommendations. Phys. A: Stat. Mech. Appl., 432: 410–434.Google Scholar
  50. Seuront L. 2015b. Copepods: Diversity, Habitat and Behavior. Nova Science Publishers, New York. 291p.Google Scholar
  51. Sims D W, Humphries N E, Bradford R W, Bruce B D. 2012. Lé vy flight and Brownian search patterns of a free–ranging predator reflect different prey field characteristics. J. Anim. Ecol., 81 (2): 432–442.CrossRefGoogle Scholar
  52. Timms B V. 2007. The biology of the saline lakes of central and eastern inland of Australia: a review with special reference to their biogeographical affinities. Hydrobiologia, 576 (1): 27–37.CrossRefGoogle Scholar
  53. Uttieri M, Sandulli R, Spezie G, Zambianchi E. 2014. From small to large scale: a review of the swimming behaviour of Daphnia. In: El–Doma M ed. Daphnia: Biology and Mathematics Perspectives. Nova Science Publishers, New York. p.309–312.Google Scholar
  54. Wickramarathna L N, Noss C, Lorke A. 2014. Hydrodynamic trails produced by Daphnia: size and energetics. PLoS One, 9 (3): e92383.CrossRefGoogle Scholar
  55. Woodson C B, Webster D R, Weissburg M J, Yen J. 2007. Cue hierarchy and foraging in calanoid copepods: ecological implications of oceanographic structure. Mar. Ecol. Progr. Ser., 330: 163–177.CrossRefGoogle Scholar
  56. Yen J, Sehn J K, Catton K, Kramer A, Sarnelle O. 2011. Pheromone trail following in three dimensions by the freshwater copepod Hesperodiaptomus shoshone. J. Plankton Res., 33 (6): 907–916.CrossRefGoogle Scholar
  57. Zar J H. 2010. Biostatistical Analysis. 5 th edn. Prentice–Hall, Upper Saddle River, NJ.Google Scholar
  58. Ziarek J J, Nihongi A, Nagai T, Uttieri M, Strickler J R. 2011. Seasonal adaptations of Daphnia pulicaria swimming behaviour: the effect of water temperature. Hydrobiologia, 661 (1): 317–327.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Clayton Leigh McCloud
    • 1
  • Hasnun Nita Ismail
    • 2
  • Laurent Seuront
    • 3
    Email author
  1. 1.Australian Fisheries Management AuthorityCanberraAustralia
  2. 2.School of BiologyUniversiti Teknologi MARASelangorMalaysia
  3. 3.CNRS, Univ. Lille, Univ. Littoral Côte d’Opale, UMR 8187LOG, Laboratoire d’Océanologie et de GéosciencesWimereuxFrance

Personalised recommendations