Journal of Oceanology and Limnology

, Volume 36, Issue 6, pp 1993–2001 | Cite as

Chemical and biological features of the saline Lake Krasnovishnevoye (Baraba, Russia) in comparison with Lake Malinovoe (Kulunda, Russia): a reconnaissance study

  • Anastasia KomovaEmail author
  • Anna Melnikova
  • Zorigto Namsaraev
  • Roman Romanov
  • Vera Strakhovenko
  • Ekaterina Ovdina
  • Nadezhda Ermolaeva
Special Issue on Salt Lakes: From the 13th International Conference on Salt Lake Research Ulan-Ude, 20–25 August 2017 Guest editors: Aharon OREN, DENG Tianlong, Nikolai V. SHADRIN, ZHENG Mianping, Egor S. ZADEREEV


The Baraba and Kulunda steppes are located in southwestern Siberia in an area with an arid continental climate. This paper presents results of the first study of the hypersaline Lake Krasnovishnevoye (Baraba steppe, TDS (total dissolved solids)=297 g/L, pH 7.88). The major chemical, mineralogical and biological features of the lake were studied and compared to those of Lake Malinovoe, a typical saline neutral lake of Kulunda steppe (TDS=396 g/L, pH 7.63). The phytoplankton composition and the culturable diversity of anoxygenic phototrophic bacteria from Lake Krasnovishnevoye correspond to the ones in the Kulunda lakes. Nevertheless, the peculiarities of water composition and regime of Lake Krasnovishnevoye reduce the biodiversity to prokaryotes and unicellular algae.


saline and soda lakes hydrochemistry hydrobiology phytoplankton zooplankton anoxygenic phototrophic bacteria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Authors thank L. M. Kipriyanova for sampling in 2003 and Prof. V. M. Gorlenko for fruitful discussion.


  1. Biebl H, Pfennig N. 1981. Isolation of members of the family rhodospirillaceae. In: Starr M P, Stolp H, Trüper H G et al eds. The Prok aryotes. Springer, Berlin, Heidelberg. p.267–273.Google Scholar
  2. Bryanskaya A V, Malup T K, Lazareva E V, Taran O P, Rozanov A S, Efimov V M, Peltek S E. 2016. The role of environmental factors for the composition of microbial communities of saline lakes in the Novosibirsk region (Russia). BMC Microbiol, 16: S4.CrossRefGoogle Scholar
  3. Foti M J, Sorokin D Y, Zacharova E E, Pimenov N V, Kuenen J G, Muyzer G. 2008. Bacterial diversity and activity along a salinity gradient in soda lakes of the Kulunda Steppe (Altai, Russia). Extremophiles, 12 (1): 133–145.CrossRefGoogle Scholar
  4. Gorlenko V M, Bryantseva I A, Rabold S, Tourova T P, Rubtsova D, Smirnova E, Thiel V, Imhoff J F. 2009. Ectothiorhodospira variabilis sp. nov., an alkaliphilic and halophilic purple sulfur bacterium from soda lakes. International Journal of Systematic and Evolutionary Microbiology, 59 (Pt 4): 658–664.Google Scholar
  5. Grant W D. 2006. Alkaline Environments and Biodiversity. EOLSS Publishers Oxford, UK. p.1–19.Google Scholar
  6. Hammer U T. 1986. Saline Lake Ecosystems of the World (Monographiae Biologicae). Dr. W. Junk Publishers, Dordrecht. 616p.Google Scholar
  7. Herbert R A. 1990. Methods for enumerating microorganisms and determining biomass in natural environments. In: Grigorova R, Norris J R eds. Methods in Microbiology. Academic Press, London. p.1–40.Google Scholar
  8. Imhoff J F. 2005. Order Chromatiales. In: Garrity G M, Editorin–Chief. Bergey’s Manual of Systematic Bacteriology: The Gammaproteobacteria. 2 nd edn. Springer–Verlag, New York, Berlin, Heidelberg. p.1–59.Google Scholar
  9. Komárek J, Fott B. 1983. Chlorophyceae (grünalgen). Ordnung: chlorococcales. In: Huber–Pestalozzi G ed. Das Phytoplankton des Süßwassers. Systematik und Biologie. Schweizerbart’sche, Stuttgart.Google Scholar
  10. Kompantseva E I, Komova A V, Rusanov I I, Pimenov N V, Sorokin D Y. 2009. Primary production of organic matter and phototrophic communities in the soda lakes of the Kulunda steppe (Altai krai). Microbiology, 78 (5): 643–649.CrossRefGoogle Scholar
  11. Kompantseva E I, Komova A V, Sorokin D Y. 2010. Communities of anoxygenic phototrophic bacteria in the saline soda lakes of the Kulunda Steppe (Altai Krai). Microbiology, 79 (1): 89–95.CrossRefGoogle Scholar
  12. Kompantseva E I, Naimark E B, Boeva N M, Zhukhlistov A P, Novikov V M, Nikitina N S. 2013. Interaction of anoxygenic phototrophic bacteria Rhodopseudomonas sp. with kaolinite. Microbiology, 82 (3): 316–326.CrossRefGoogle Scholar
  13. Kompantseva E I, Naimark E B, Komova A V, Nikitina N S. 2011. Interaction of the haloalkaliphilic purple bacteria Rhodovulum steppense with aluminosilicate minerals. Microbiolog y, 80 (5): 650–656. Landsat Look Viewer., accessed 2 May 2018.Google Scholar
  14. Lepot K, Compère P, Gérard E, Namsaraev Z, Verleyen E, Tavernier I, Hodgson D A, Vyverman W, Gilbert B, Wilmotte A, Javaux E J. 2014. Organic and mineral imprints in fossil photosynthetic mats of an East Antarctic lake. Geobiology, 12 (5): 424–450.CrossRefGoogle Scholar
  15. Melack J M, Kilham P. 1974. Photosynthetic rates of phytoplankton in East African alkaline, saline lakes. Limnol. Oceanogr., 19 (5): 743–755.CrossRefGoogle Scholar
  16. Moiseenko T I, Gashkina N A, Dinu M I, Kremleva T A, Khoroshavin V Y. 2013. Aquatic geochemistry of small lakes: effects of environment changes. Geochemistry International, 51 (13): 1 031–1 148.CrossRefGoogle Scholar
  17. Naimark E B, Kompantseva E I, Komova A V. 2009. Interaction between anoxygenic phototrophic bacteria of the genus Rhodovulum and volcanic ash. Microbiology, 78 (6): 747–756.CrossRefGoogle Scholar
  18. Namsaraev Z, Samylina O, Sukhacheva M, Borisenko G, Sorokin D Y, Tourova T. 2018. Effect of salinity on diazotrophic activity and microbial composition of phototrophic communities from Bitter–1 soda lake (Kulunda Steppe, Russia). Extremophiles, 22 (4): 651–663.CrossRefGoogle Scholar
  19. Oren A. 2014. The ecology of Dunaliella in high–salt environments. Journal of Biological Research–Thessaloniki, 21: 23.CrossRefGoogle Scholar
  20. Pfennig N, Lippert K D. 1966. Über das Vitamin B 12–Bedürfnis phototropher Schwefelbakterien. Archiv für Mikrobiologie, 55 (3): 245–256.CrossRefGoogle Scholar
  21. Popa R, Kinkle B K, Badescu A. 2004. Pyrite framboids as biomarkers for iron–sulfur systems. Geomicrobiology Journal, 21 (3): 193–206.CrossRefGoogle Scholar
  22. Rivadeneyra M A, Delgado G, Ramos–Cormenzana A, Delgado R. 1998. Biomineralization of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: crystal formation sequence. Research in Microbiology, 149 (4): 277–287.CrossRefGoogle Scholar
  23. Samylina O S, Sapozhnikov F V, Gainanova O Y, Ryabova A V, Nikitin M A, Sorokin D Y. 2014. Algo–bacterial communities of the Kulunda steppe (Altai region, Russia) soda lakes. Microbiology, 83 (6): 849–860.CrossRefGoogle Scholar
  24. Savchenko N V. 1997. The Lakes of Southern Plains of Western Siberia. Publishers SBRAS, Novosibirsk. 297p.Google Scholar
  25. Shadrin N, Anufriieva E. 2012. Review of the biogeography of Artemia Leach, 1819 (Crustacea: Anostraca) in Russia. International Journal of Artemia Biology, 2 (1): 51–61.Google Scholar
  26. Sorokin D Y, Abbas B, Geleijnse M, Pimenov N V, Sukhacheva M V, Van Loosdrecht M C. 2015. Methanogenesis at extremely haloalkaline conditions in the soda lakes of Kulunda Steppe (Altai, Russia). FEMS Microbiology Ecology, 91 (4): fiv016.CrossRefGoogle Scholar
  27. Sorokin D Y, Kuenen J G, Muyzer G. 2011. The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Frontiers Microbiology, 2: 44.CrossRefGoogle Scholar
  28. Sorokin D Y, Rusanov I I, Pimenov N V, Tourova T P, Abbas B, Muyzer G. 2010. Sulfidogenesis under extremely haloalkaline conditions in soda lakes of Kulunda Steppe (Altai, Russia). FEMS Microbiology Ecology, 73 (2): 278–290.Google Scholar
  29. State Standard PND F 14.2.99–97. 1997. Quantitative chemical analysis of water. A titrimetric method of measurement of hydrocarbonates mass concentration in the natural samples. Moscow, State Committee of the Russian Federation for Environmental Protection. 20p. (in Russian)Google Scholar
  30. Strakhovenko V D, Ovdina E A, Ermolaeva N I, Zarubina E Yu, Saltykov A V. 2017. The peculiarities of chemical composition of lake waters and forming there various sapropels. In: Proceedings of Russian Scientific Conference with Foreign Participation “Water Resources: The New Challenges and the Ways of Solution”. Sochi, p.426–431. (in Russian)Google Scholar
  31. Strakhovenko V D, Shcherbov B L, Malikova I N, Vosel Y S. 2010. The regularities of distribution of radionuclides and reare–earth elements in bottom sediments of Siberian lakes. Russian Geology and Geophysics, 51 (11): 1 167–1 178.CrossRefGoogle Scholar
  32. Strakhovenko V D. 2011. Geochemistry of Bottom Sediments in the Small Continental Lakes of Siberia. IGM SORAN, Novosibirsk. 32p. (in Russian)Google Scholar
  33. Tatarinov A V, Yalovik L I, Namsaraev Z, Plyusnin A M, Konstantinova K K, Zhmodik S M. 2005. Role of bacterial mats in the formation of rocks and ore minerals in travertines of nitric hydrothermal springs in the Baikal Rift zone. Doklady Earth Sciences, 403 (6): 939–942.Google Scholar
  34. Tourova T P, Slobodova N V, Bumazhkin B K, Sukhacheva M V, Sorokin D Y. 2014. Diversity of diazotrophs in the sediments of saline and soda lakes analyzed with the use of the nifH gene as a molecular marker. Microbiology, 83 (5): 634–647.CrossRefGoogle Scholar
  35. Tsalolikhin S Y. 1995. Key to Freshwater Invertebrates of Russia. Zoological Institute RAS, Saint–Petersburg. (in Russian)Google Scholar
  36. Vesnina L V, Mitrofanova E Yu, Lisitsyna T O. 2005. Plankton of salted lakes of the territory of a closed runoff(the South of West Siberia, Russia). Sibirskiy Ekologicheskiy Zhurnal, 2: 221–233. (in Russian)Google Scholar
  37. Woronichin N N. 1929. Materials towards study of algal vegetation in lakes of Kulunda Steppe. Izvestiya Glavnogo Botanicheskogo Sada SSSR, 28 (1–2): 12–40. (in Russian)Google Scholar
  38. Woroniсhin N N. 1934. Contributions to the knowledge of biology of saline water bodies from Kulunda Steppe. Trudy SOPS AN SSSR, Ser. Sibirskaya, 8: 177–183. (in Russian)Google Scholar
  39. Zavarzin G A. 1993. Epicontinental soda lakes as probable relict biotopes of terrestrial biota formation. Mikrobiologiya, 62 (6): 789–800.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Anastasia Komova
    • 1
    Email author
  • Anna Melnikova
    • 1
  • Zorigto Namsaraev
    • 1
  • Roman Romanov
    • 2
  • Vera Strakhovenko
    • 3
  • Ekaterina Ovdina
    • 3
  • Nadezhda Ermolaeva
    • 4
  1. 1.National Research Centre “Kurchatov Institute”MoscowRussia
  2. 2.Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of SciencesNovosibirskRussia
  3. 3.V. S. Sobolev Institute of Geology and Mineralogy of the Russian Academy of SciencesNovosibirskRussia
  4. 4.Institute for Water and Environmental ProblemsSiberian Branch of the Russian Academy of SciencesBarnaulRussia

Personalised recommendations