Advertisement

Journal of Oceanology and Limnology

, Volume 36, Issue 6, pp 1978–1992 | Cite as

Structure and diversity dynamics of microbial communities at day and night: investigation of meromictic Lake Doroninskoe, Transbaikalia, Russia

  • Evgeniya MatyuginaEmail author
  • Natalia Belkova
  • Svetlana Borzenko
  • Pavel Lukyanov
  • Marsel Kabilov
  • Olga Baturina
  • Alexandra Martynova-Van Kley
  • Armen Nalian
  • Aleksei Ptitsyn
Special Issue on Salt Lakes: From the 13th International Conference on Salt Lake Research Ulan-Ude, 20–25 August 2017 Guest editors: Aharon OREN, DENG Tianlong, Nikolai V. SHADRIN, ZHENG Mianping, Egor S. ZADEREEV
  • 29 Downloads

Abstract

Extreme environmental conditions are key factors in the formation of the structure and diversity of microbial communities. In meromictic ecosystems, extreme conditions and a stable stratification of physical, chemical and biological parameters lead to diversity and heterogeneity of microenvironments. Lake Doroninskoe is located in an extreme geographical area and differs from other known meromictic reservoirs of the world by a low level of illumination in the chemocline and a rare type of alkaline water in sedimentary rocks formed by evaporative concentration. To understand the key factors that shape the composition and structure of the microbial community, the macro- and micro-variations in space and time are of great importance. We investigated the short-term dynamics of the structure and diversity of microbial communities of the meromictic soda lake, Lake Doroninskoe, at day and night using highthroughput sequencing and bioinformatics. Metagenomic analysis of 16S rRNA gene amplicons showed that the microbial communities had a high taxonomic diversity both at day and night. Sixteen bacterial and three archaeal phyla were identified. Proteobacteria were dominant and comprised 75% during the day, increasing to 90% at night. Metabolically stable denitrifying bacteria that were able to use a variety of alternative electron acceptors and electron donors were prevalent in Lake Doroninskoe. They belonged to the families Enterobacteriaceae (class Gammaproteobacteria) and Alcaligenaceae (class Betaproteobacteria). Statistically significant differences between day and night microbial communities were found. During the day, the microbial community was the most diverse. We discuss the peculiarities of the underexplored shortterm dynamics of the structure and diversity of the microbial communities of the meromictic soda Lake Doroninskoe, and propose topics for prospective studies.

Keyword

bacterial diversity day-night dynamics meromixis Lake Doroninskoe high-throughput amplicon sequencing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This research study was conducted according to the project IX.137.1.1 “Biodiversity of natural and natural-technogenic ecosystems of Transbaikalia (Cenrtal Asia) as indicators of regional climate changes” (АААА-А17-117011210078-9).

References

  1. Andrade K, Logemann J, Heidelberg K B, Emerson J B, Comolli L R, Hug L A, Probst A J, Keillar A, Thomas B C, Miller C S, Allen E E, Moreau J W, Brocks J J, Banfield J F. 2015. Metagenomic and lipid analyses reveal a diel cycle in a hypersaline microbial ecosystem. ISME Journal, 9 (12): 2 697–2 711.Google Scholar
  2. Andrei A Ş, Robeson II M S, Baricz A, Coman C, Muntean V, Ionescu A, Etiope G, Alexe M, Sicora C I, Podar M, Banciu H L. 2015. Contrasting taxonomic stratification of microbial communities in two hypersaline meromictic lakes. ISME Journal, 9 (12): 2 642–2 656.Google Scholar
  3. Baatar B, Chiang P W, Rogozin D Y, Wu Y T, Tseng C H, Yang C Y, Chiu H H, Oyuntsetseg B, Degermendzhy A G, Tang S L. 2016. Bacterial communities of three saline meromictic lakes in Central Asia. PLoS One, 11 (3): e0150847.Google Scholar
  4. Borzenko S V, Zamana L V, Buryukhaev S P. 2014. The isotopic composition of dissolved carbonates as a reflection of abiogenic and biogenic processes in the water column of the Lake Doroninskoe. Razvitie zhizni v protsesse abioticheskikh izmenenij na Zamle, 3: 319–323. (in Russian).Google Scholar
  5. Borzenko S V, Zamana L V, Noskova E V. 2015. Meromixis of the Lake Doroninskoye (Eastern Transbaikalia). Geological and Mineralogical sciences, 1: 420–425. (in Russian).Google Scholar
  6. Borzenko S V, Zamana L V. 2011. Reduced forms of sulfur in the brine of saline–soda Lake Doroninskoe, eastern Transbaikal region. Geochemistry International, 49 (3): 253–261. (in Russian)Google Scholar
  7. Bosshard P P, Santini Y, Grüter D, Stettler R, Bachofen R. 2000. Bacterial diversity and community composition in the chemocline of the meromictic alpine Lake Cadagno as revealed by 16S rDNA analysis. FEMS Microbiology Ecology, 31 (2): 173–182.Google Scholar
  8. Comeau A M, Harding T, Galand P E, Vincent W F, Lovejoy C. 2012. Vertical distribution of microbial communities in a perennially stratified Arctic lake with saline, anoxic bottom waters. Scientific Reports, 2: 604.Google Scholar
  9. Dimitriu P A, Pinkart H C, Peyton B M, Mormile M R. 2008. Spatial and temporal patterns in the microbial diversity of a meromictic soda lake in Washington State. Applied and Environmental Microbiology, 74 (15): 4 877–4 888.Google Scholar
  10. Dvornyk V, Vinogradova O, Nevo E. 2003. Origin and evolution of circadian clock genes in prokaryotes. Proceedings of the National Academy of Sciences of the United States of America, 100 (5): 2 495–2 500.Google Scholar
  11. Edgar R C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10 (10): 996–998.Google Scholar
  12. Fadrosh D W, Ma B, Gajer P, Sengamalay N, Ott S, Brotman R M, Ravel J. 2014. An improved dual–indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome, 2: 6.Google Scholar
  13. Falagán C, Sánchez–España J, Johnson D B. 2014. New insights into the biogeochemistry of extremely acidic environments revealed by a combined cultivation–based and culture–independent study of two stratified pit lakes. FEMS Microbiology Ecology, 87 (1): 231–243.Google Scholar
  14. Frigaard N U, Dahl C. 2008. Sulfur metabolism in phototrophic sulfur bacteria. Advances in Microbial Physiology, 54: 103–200.Google Scholar
  15. Garcia S L, Salka I, Grossart H P, Warnecke F. 2013. Depthdiscrete profiles of bacterial communities reveal pronounced spatio–temporal dynamics related to lake stratification. Environmental Microbiology Reports, 5 (4): 549–555.Google Scholar
  16. Garcia–Gil L J, Casamitjana X, Abella C A. 1996. Comparative study of two meromictic basins of Lake Banyoles (Spain) with sulphur phototrophic bacteria. Hydrobiologia, 319 (3): 203–211.Google Scholar
  17. Gifford S M, Sharma S, Moran M A. 2014. Linking activity and function to ecosystem dynamics in a coastal bacterioplankton community. Frontiers in Microbiology, 5: 185.Google Scholar
  18. Gilbert J A, Field D, Swift P, Thomas S, Cummings D, Temperton B, Weynberg K, Huse S, Hughes M, Joint I, Somerfield P J, Mühling M. 2010. The taxonomic and functional diversity of microbes at a temperate coastal site: a ‘Multi–Omic’ study of seasonal and diel temporal variation. PLoS One, 5 (11): e15545.Google Scholar
  19. Gorlenko V M, Buryukhaev S P, Matyugina E B, Borzenko S V, Namsaraev Z B, Bryantseva I A, Boldareva E N, Sorokin D Y, Namsaraev B B. 2010. Microbial communities of the stratified soda Lake Doroninskoe (Transbaikal region). Microbiology, 79 (3): 390–401.Google Scholar
  20. Gregersen L H, Habicht K S, Peduzzi S, Tonolla M, Canfield D E, Miller M, Cox R P, Frigaard N U. 2009. Dominance of a clonal green sulfur bacterial population in a stratified lake. FEMS Microbiology Ecology, 70 (1): 30–41.Google Scholar
  21. Gulati R D, Zadereev E S, Degermendzhi A G. 2017. Ecology of Meromictic Lakes. Springer, Cham. 405p.Google Scholar
  22. Gunnigle E, Frossard A, Ramond J B, Guerrero L, Seely M, Cowan D A. 2017. Diel–scale temporal dynamics recorded for bacterial groups in Namib Desert soil. Scientific Reports, 7: 40 189.Google Scholar
  23. Habicht K S, Miller M, Cox R P, Frigaard N U, Tonolla M, Peduzzi S, Falkenby L G, Andersen J S. 2011. Comparative proteomics and activity of a green sulfur bacterium through the water column of Lake Cadagno, Switzerland. Environmental Microbiology, 13 (1): 203–215.Google Scholar
  24. Hamilton T L, Bovee R J, Sattin S R, Mohr W, Gilhooly III W P, Lyons T W, Pearson A, Macalady J L. 2016. Carbon and sulfur cycling below the chemocline in a meromictic lake and the identification of a novel taxonomic lineage in the FCB Superphylum, Candidatus Aegiribacteria. Frontiers in Microbiology, 7: 598.Google Scholar
  25. Hashsham S A, Fernandez A S, Dollhopf S L, Dazzo F B, Hickey R F, Tiedje J M, Criddle C S. 2000. Parallel processing of substrate correlates with greater functional stability in methanogenic bioreactor communities perturbed by glucose. Applied and Environmental Microbiology, 66 (9): 4 050–4 057.Google Scholar
  26. Hewson I, Poretsky R S, Tripp H J, Montoya J P, Zehr J P. 2010. Spatial patterns and light–driven variation of microbial population gene expression in surface waters of the oligotrophic open ocean. Environmental Microbiology, 12 (27): 1 940–1 956.Google Scholar
  27. Humayoun S B, Bano N, Hollibaugh J T. 2003. Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Applied and Environmental Microbiology, 69 (2): 1 030–1 042.Google Scholar
  28. Hut R A, Beersma D G M. 2011. Evolution of time–keeping mechanisms: early emergence and adaptation to photoperiod. Philosophical Transactions of the Royal Society B: Biological Sciences, 366 (1574): 2 141–2 154.Google Scholar
  29. Imhoff J F. 2016. New dimensions in microbial ecology–functional genes in studies to unravel the biodiversity and role of functional microbial groups in the environment. Microorganisms, 4 (2): 19.Google Scholar
  30. Johnson D B, Hallberg K B. 2009. Carbon, iron and sulfur metabolism in acidophilic micro–organisms. Advances in Microbial Physiology, 54: 201–255.Google Scholar
  31. Koizumi Y, Kojima H, Fukui M. 2004a. Dominant microbial composition and its vertical distribution in saline meromictic Lake Kaiike (Japan) as revealed by quantitative oligonucleotide probe membrane hybridization. Applied and Environmental Microbiology, 70 (8): 4 930–4 940.Google Scholar
  32. Koizumi Y, Kojima H, Oguri K, Kitazato H, Fukui M. 2004b. Vertical and temporal shifts in microbial communities in the water column and sediment of saline meromictic Lake Kaiike (Japan), as determined by a 16S rDNA–based analysis, and related to physicochemical gradients. Environmental Microbiology, 6 (6): 622–637.Google Scholar
  33. Lanzén A, Simachew A, Gessesse A, Chmolowska D, Jonassen I, Øvreås L. 2013. Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of Ethiopian Soda Lakes. PLoS One, 8 (8): e72577.Google Scholar
  34. Lauro F M, De Maere M Z, Yau S, Brown M V, Ng C, Wilkins D, Raftery M J, Gibson J A, Andrews–Pfannkoch C, Lewis M, Hoffman J M, Thomas T, Cavicchioli R. 2011. An integrative study of a meromictic lake ecosystem in Antarctica. ISME Journal, 5 (5): 879–895.Google Scholar
  35. Leboulanger C, Agogué H, Bernard C, Bouvy M, Carré C, Cellamare M, Duval C, Fouilland E, Got P, Intertaglia L, Lavergne C, Le Floc’h E, Roques C, Sarazin G. 2017. Microbial diversity and cyanobacterial production in Dziani Dzaha crater Lake, a unique tropical thalassohaline environment. PLoS One, 12 (1): e0168879.Google Scholar
  36. Lehours A C, Bardot C, Thenot A, Debroas D, Fonty G. 2005. Anaerobic microbial communities in Lake Pavin, a unique meromictic Lake in France. Applied and Environmental Microbiology, 71 (11): 7 389–7 400.Google Scholar
  37. Lehours A C, Evans P, Bardot C, Joblin K, Gérard F. 2007. Phylogenetic diversity of archaea and bacteria in the anoxic zone of a meromictic lake (Lake Pavin, France). Applied and Environmental Microbiology, 73 (6): 2 016–2 019.Google Scholar
  38. Lindström E S, Langenheder S. 2012. Local and regional factors influencing bacterial community assembly. Environmental Microbiology Reports, 4 (1): 1–9.Google Scholar
  39. Lozupone C A, Knight R. 2007. Global patterns in bacterial diversity. Proceedings of the National Academy of Sciences of the United States of America, 104 (27): 11 436–11 440.Google Scholar
  40. Matyugina E B, Borzenko S V, Matafonov P V, Belkova N L. 2014. A laboratory experiment for meromixis in an integrated sample of soda Lake Doroninskoye (Transbaikalia). Current Research in Microbiology and Biotechnology, 2 (3): 398–401.Google Scholar
  41. Matyugina E, Belkova N. 2015. Distribution and diversity of microbial communities in meromictic soda Lake Doroninskoe (Transbaikalia, Russia) during winter. Chinese Journal of Oceanology and Limnology, 33 (6): 1 378–1 390.Google Scholar
  42. Meuser J E, Baxter B K, Spear J R, Peters J W, Posewitz M C, Boyd E S. 2013. Contrasting patterns of community assembly in the stratified water column of Great Salt Lake, Utah. Microbial Ecology, 66 (2): 268–280.Google Scholar
  43. Oksanen J, Blanchet F G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin P R, O’Hara R B, Simpson G L, Solymos P, Stevens M H H, Szoecs E, Wagner H. 2018. Vegan: Community Ecology Package.Google Scholar
  44. Ottesen E A, Young C R, Gifford S M, Eppley J M, Marin III R, Schuster S C, Scholin C A, DeLong E F. 2014. Ocean microbes. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science, 345 (6193): 207–212.Google Scholar
  45. Overmann J, Beatty J T, Hall K J, Pfennig N, Northcote T G. 1991. Characterization of a dense, purple sulfur bacterial layer in a meromictic salt lake. Limnology and Oceanography, 36 (5): 846–859.Google Scholar
  46. Poretsky R S, Hewson I, Sun S L, Allen A E, Zehr J P, Moran M A. 2009. Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre. Environmental Microbiology, 11 (6): 1 358–1 375.Google Scholar
  47. R Development Core Team. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  48. Robertson C E, Harris J K, Wagner B D, Granger D, Browne K, Tatem B, Feazel L M, Park K, Pace N R, Frank D N. 2013. Explicet: Graphical user interface software for metadata–driven management, analysis and visualization of microbiome data. Bioinformatics, 29 (23): 3 100–3 101.Google Scholar
  49. Shilova I N, Robidart J C, DeLong E F, Zehr J P. 2016. Genetic diversity affects the daily transcriptional oscillations of marine microbial populations. PLoS One, 11 (1): e0146706.Google Scholar
  50. Silveira C B, Gregoracci G B, Coutinho F H, Silva G G Z, Haggerty J M, de Oliveira L S, Cabral A S, Rezende C E, Thompson C C, Francini–Filho R B, Edwards R A, Dinsdale E A, Thompson F L. 2017. Bacterial community associated with the reef coral Mussismilia braziliensis’ s momentum boundary layer over a diel cycle. Frontiers in Microbiology, 8: 784.Google Scholar
  51. Sorokin D Y, Foti M, Pinkart H C, Muyzer G. 2007. Sulfuroxidizing bacteria in Soap Lake (Washington State), a meromictic, haloalkaline lake with an unprecedented high sulfide content. Applied and Environmental Microbiology, 73 (2): 451–455.Google Scholar
  52. Sorokin D Y, Gorlenko V M, Tourova T P, Tsapin A I, Nealson K H, Kuenen G J. 2002. Thioalkalimicrobium cyclicum sp. nov. and Thioalkalivibrio jannaschii sp. nov., novel species of haloalkaliphilic, obligately chemolithoautotrophic sulfur–oxidizing bacteria from hypersaline alkaline Mono Lake (California). International Journal of Systematic and Evolutionary Microbiology, 52 (3): 913–920.Google Scholar
  53. Tagkopoulos I, Liu Y C, Tavazoie S. 2008. Predictive behavior within microbial genetic networks. Science, 320 (5881): 1 313–1 317.Google Scholar
  54. Thorpe C L, Morris K, Boothman C, Lloyd J R. 2012. Alkaline Fe(III) reduction by a novel alkali–tolerant Serratia sp. isolated from surface sediments close to Sellafield nuclear facility, UK. FEMS Microbiology Letters, 327 (2): 87–92.Google Scholar
  55. Tonolla M, Peduzzi R, Hahn D. 2005. Long–term population dynamics of phototrophic sulfur bacteria in the chemocline of Lake Cadagno, Switzerland. Applied and Environmental Microbiology, 71 (7): 3 544–3 550.Google Scholar
  56. Vila–Costa M, Sharma S, Moran M A, Casamayor E O. 2013. Diel gene expression profiles of a phosphorus limited mountain lake using metatranscriptomics. Environmental Microbiology, 15 (4): 1 190–1 203.Google Scholar
  57. Volkov I I, Zhabina N N. 1990. Method of determination of reduced sulfur–compounds in the sea–water Okeanologiya, 3 0 (5): 778–782.Google Scholar
  58. Wang J J, Yang D M, Zhang Y, Shen J, van der Gast C, Hahn M W, Wu Q L. 2011. Do patterns of bacterial diversity along salinity gradients differ from those observed for macroorganisms? PLoS One, 6 (11): e27597.Google Scholar
  59. Wang Q, Garrity G M, Tiedje J M, Cole J R. 2007. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73 (16): 5 261–5 267.Google Scholar
  60. Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, de Vos P, Verstraete W, Boon N. 2009. Initial community evenness favours functionality under selective stress. Nature, 458 (7238): 623–626.Google Scholar
  61. Zamana L V, Borzenko S V. 2007. Hydrogen sulfide and other reduced forms of sulfur in oxic waters of Lake Doroninskoe, Eastern Transbaikalia. Doklady Earth Sciences, 417 (1): 1 268–1 271.Google Scholar
  62. Zerkle A L, Kamyshny A Jr, Kump L R, Farquhar J, Oduro H, Arthur M A. 2010. Sulfur cycling in a stratified euxinic lake with moderately high sulfate: constraints from quadruple S isotopes. Geochimica et Cosmochimica Acta, 74 (17): 4 953–4 970.Google Scholar
  63. Zhang F, Vicente J, Hill R T. 2014. Temporal changes in the diazotrophic bacterial communities associated with Caribbean sponges Ircinia stroblina and Mycale laxissima. Frontiers in Microbiology, 5: 561.Google Scholar
  64. Zhong Z P, Liu Y, Miao L L, Wang F, Chu L M, Wang J L, Liu Z P. 2016. Prokaryotic community structure driven by salinity and ionic concentrations in Plateau Lakes of the Tibetan plateau. Applied and Environmental Microbiology, 82 (6): 1 846–1 858.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Evgeniya Matyugina
    • 1
    Email author
  • Natalia Belkova
    • 2
  • Svetlana Borzenko
    • 1
  • Pavel Lukyanov
    • 1
  • Marsel Kabilov
    • 3
  • Olga Baturina
    • 3
  • Alexandra Martynova-Van Kley
    • 4
  • Armen Nalian
    • 4
  • Aleksei Ptitsyn
    • 1
  1. 1.Institute of Natural ResourcesEcology and Cryology SB RASChitaRussia
  2. 2.Limnological Institute SB RASIrkutskRussia
  3. 3.Institute of Chemical Biology and Fundamental MedicineNovosibirskRussia
  4. 4.Stephen F. Austin State UniversityTXUSA

Personalised recommendations