Advertisement

Journal of Oceanology and Limnology

, Volume 36, Issue 6, pp 2018–2032 | Cite as

A model study of the effect of weather forcing on the ecology of a meromictic Siberian lake

  • Igor G. Prokopkin
  • Egor S. ZadereevEmail author
Special Issue on Salt Lakes: From the 13th International Conference on Salt Lake Research Ulan-Ude, 20–25 August 2017 Guest editors: Aharon OREN, DENG Tianlong, Nikolai V. SHADRIN, ZHENG Mianping, Egor S. ZADEREEV
  • 19 Downloads

Abstract

We used a Lake Shira numerical model to estimate the response of the ecosystem of a saline meromictic lake to variations in weather parameters during the growing season. The sensitivity analysis of the model suggests that compared to other external (nutrient inflows) and internal (spring biomasses of food-web components) factors, weather parameters are among the most influential for both mixolimnetic (phyto- and zooplankton) and monimolimnetic (purple sulfur bacteria, sulfur reducing bacteria and hydrogen sulfide) food-web components. Calculations with different weather scenarios shows how changes in the water temperature and mixing depth affect mixolimnetic and monimolimnetic food-web components and the depth of the oxic-anoxic interface in a meromictic lake. When weather forcing stimulates an increase in the biomass of food-web components in the mixolimnion, it produces cascading effects that lead to three results: 1) a higher content of detritus in the water column; 2) a higher content of hydrogen sulfide in the monimolimnion; 3) raising of the oxic-anoxic interface closer to the water-air surface. This cascading effect is complicated by the negative correlation between two light dependent primary producers located at different depths—phytoplankton in the mixolimnion and purple sulfur bacteria at the oxic-anoxic interface. Thus, weather conditions that stimulate higher phytoplankton biomass are associated with a higher detritus content and lower biomass of purple sulfur bacteria, a higher content of hydrogen sulfide and a shallower oxic-anoxic interface. The same weather conditions (higher wind, lower cloud cover, and lower air temperature) promote a scenario of less stable thermal stratification. Thus, our calculations suggest that weather parameters during the summer season strongly control the mixing depth, water temperature and the mixolimnetic food web. An effect of biogeochemical and physical interactions on the depth of the oxicanoxic interface is also detectable. However, intra- and interannual climate and weather effects will be more important for the control of meromixis stability.

Keyword

meromictic lake numerical model weather forcing sensitivity analysis stratification food web 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

We are grateful to all colleagues from the Institute of Biophysics SB RAS and other academic institutes who have been engaged in long-term research at Lake Shira, providing the field data to support modeling. Special thanks to Prof. Aharon Oren, Elena Krasova and Sofia Shishatskaya for linguistic improvements. Two anonymous reviewers are acknowledged for helpful comments and suggestions.

References

  1. Simlab. 2011. Software package for uncertainty and sensitivity analysis. Joint Research Centre of the European Commission. http://simlab.jrc.ec.europa.eu.Google Scholar
  2. Arhonditsis G B, Brett M T. 2005. Eutrophication model for Lake Washington (USA): Part I. model description and sensitivity analysis. Ecol. Modell., 187 (2–3): 140–178.Google Scholar
  3. Arvola L, George G, Livingstone D M, Järvinen M, Blenckner T, Dokulil M T, Jennings E, Aonghusa C N, Nõges P, Nõges T, Weyhenmeyer G A. 2009. The impact of the changing climate on the thermal characteristics of lakes. In: George G ed. The Impact of Climate Change on European Lakes. Aquatic Ecology Series, vol. 4. Springer, Dordrecht. p.85–101.Google Scholar
  4. Babushkina E A, Belokopytova L V, Grachev A M, Meko D M, Vaganov E A. 2017. Variation of the hydrological regime of Bele–Shira closed basin in Southern Siberia and its reflection in the radial growth of Larix sibirica. Reg. Environ. Change, 17 (6): 1 725–1 737.Google Scholar
  5. Belolipetsky P V, Belolipetskii V M, Genova S N, Mooij W M. 2010. Numerical modeling of vertical stratification of Lake Shira in summer. Aquat. Ecol., 44 (3): 561–570.Google Scholar
  6. Belolipetsky V M, Genova S N. 1998. Investigation of hydrothermal and ice regimes in hydropower station bays. Int. J. Comput. Fluid. Dyn., 10 (2): 151–158.Google Scholar
  7. Berger S A, Diehl S, Kunz T J, Albrecht D, Oucible A M, Ritzer S. 2006. Light supply, plankton biomass, and seston stoichiometry in a gradient of lake mixing depths. Limnol. Oceanogr., 51 (4): 1 898–1 905.Google Scholar
  8. Boehrer B, Schultze M. 2008. Stratification of lakes. Rev. Geophys., 46 (2): RG2005.Google Scholar
  9. Bueche T, Vetter M. 2014. Simulating water temperatures and stratification of a pre–alpine lake with a hydrodynamic model: calibration and sensitivity analysis of climatic input parameters. Hydrol. Proc., 28 (3): 1 450–1 464.Google Scholar
  10. Burger D F, Hamilton D P, Pilditch C A. 2008. Modelling the relative importance of internal and external nutrient loads on water column nutrient concentrations and phytoplankton biomass in a shallow polymictic lake. Ecol. Modell., 211 (3–4): 411–423.Google Scholar
  11. Butcher J B, Nover D, Johnson T E, Clark C M. 2015. Sensitivity of lake thermal and mixing dynamics to climate change. Clim. Change, 129 (1–2): 295–305.Google Scholar
  12. Degermendzhy A G, Zadereev Y S, Rogozin D Y, Prokopkin I G, Barkhatov Y V, Tolomeev A P, Khromechek E B, Janse J H, Mooij W M, Gulati R D. 2010. Vertical stratification of physical, chemical and biological components in two saline lakes Shira and Shunet (South Siberia, Russia). Aquat. Ecol., 44 (3): 619–632.Google Scholar
  13. Elliott J A, Jones I D, Thackeray S J. 2006. Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake. Hydrobiologia, 559 (1): 401–411.Google Scholar
  14. Gaevsky N A, Zotina T A, Gorbaneva T B. 2002. Vertical structure and photosynthetic activity of Lake Shira phytoplankton. Aquat. Ecol., 36 (2): 165–178.Google Scholar
  15. Gerten D, Adrian R. 2000. Climate–driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Limnol. Oceanogr., 45 (5): 1 058–1 066.Google Scholar
  16. Hadley K R, Paterson A M, Stainsby E A, Michelutti N, Yao H, Rusak J A, Ingram R, McConnell C, Smol J P. 2014. Climate warming alters thermal stability but not stratification phenology in a small north–temperate lake. Hydrol. Proc., 28 (26): 6 309–6 319.Google Scholar
  17. Holzner C P, Aeschbach–Hertig W, Simona M, Veronesi M, Imboden D M, Kipfer R. 2009. Exceptional mixing events in meromictic Lake Lugano (Switzerland/Italy), studied using environmental tracers. Limnol. Oceanogr., 54 (4): 1 113–1 124.Google Scholar
  18. Hondzo M, Stefan H G. 1993. Regional water temperature characteristics of lakes subjected to climate change. Clim. Change, 24 (3): 187–211.Google Scholar
  19. Ito Y, Momii K. 2015. Impacts of regional warming on longterm hypolimnetic anoxia and dissolved oxygen concentration in a deep lake. Hydrol. Proc., 29 (9): 2 232–2 242.Google Scholar
  20. Jankowski T, Livingstone D M, Bührer H, Forster R, Niederhauser P. 2006. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnol. Oceanogr., 51 (2): 815–819.Google Scholar
  21. Janse J H. 2005. Model Studies on the Eutrophication of Shallow Lakes and Ditches. Wageningen University, Wageningen, The Netherlands. 378p.Google Scholar
  22. Jasser I, Arvola L. 2003. Potential effects of abiotic factors on the abundance of autotrophic picoplankton in four boreal lakes. J. Plankton Res., 25 (8): 873–883.Google Scholar
  23. Jöhnk K D, Huisman J, Sharples J, Sommeijer B, Visser P M, Stroom J M. 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Change Biol., 14 (3): 495–512.Google Scholar
  24. Jones I, Sahlberg J, Persson I. 2010. Modelling the impact of climate change on the thermal characteristics of lakes. In: George G ed. The Impact of Climate Change on European Lakes. Aquatic Ecology Series, vol. 4. Springer, Dordrecht. p.103–120.Google Scholar
  25. Kaden H, Peeters F, Lorke A, Kipfer R, Tomonaga Y, Karabiyikoglu M. 2010. Impact of lake level change on deep–water renewal and oxic conditions in deep saline Lake Van, Turkey. Water Resour. Res., 46 (11): W11508.Google Scholar
  26. Kopylov A I, Kosolapov D B, Romanenko A V, Degermendzhy A G. 2002. Structure of planktonic microbial food web in a brackish stratified Siberian lake. Aquat. Ecol., 36 (2): 179–204.Google Scholar
  27. Liu W T, Bocaniov S A, Lamb K G, Smith R E H. 2014. Three dimensional modeling of the effects of changes in meteorological forcing on the thermal structure of Lake Erie. J. Great Lakes Res., 40 (4): 827–840.Google Scholar
  28. Livingstone D M. 2003. Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim. Change, 57 (1–2): 205–225.Google Scholar
  29. Madgwick G, Jones I D, Thackeray S J, Elliott J A, Miller H J. 2006. Phytoplankton communities and antecedent conditions: high resolution sampling in Esthwaite Water. Freshw. Biol., 51 (10): 1 798–1 810.Google Scholar
  30. McCauley E, Kalff J. 1981. Empirical relationships between phytoplankton and zooplankton biomass in lakes. Can. J. Fish. Aquat. Sci., 38 (4): 458–463.Google Scholar
  31. Melack J M, Jellison R, MacIntyre S, Hollibaugh J T. 2017. Mono Lake: plankton dynamics over three decades of meromixis or monomixis. In: Gulati R D, Zadereev E S, Degermendzhi A G eds. Ecology of Meromictic Lakes. Springer, Cham. p.325–351.Google Scholar
  32. Miller L G, Jellison R, Oremland R S, Culbertson C W. 1993. Meromixis in hypersaline Mono Lake, California. 3. biogeochemical response to stratification and overturn. Limnol. Oceanogr., 38 (5): 1 040–1 051.Google Scholar
  33. Mooij W M, Janse J H, De Senerpont Domis L N, Hülsmann S, Ibelings B W. 2007. Predicting the effect of climate change on temperate shallow lakes with the ecosystem model PCLake. Hydrobiologia, 584 (1): 443–454.Google Scholar
  34. Mooij W M, Trolle D, Jeppesen E, Arhonditsis G, Belolipetsky P V, Chitamwebwa D B R, Degermendzhy A G, DeAngelis D L, De Senerpont Domis L N, Downing A S, Elliott J A, Fragoso C R, Gaedke U, Genova S N, Gulati R D, Håkanson L, Hamilton D P, Hipsey M R, Hoen J, Hülsmann S, Los F H, Makler–Pick V, Petzoldt T, Prokopkin I G, Rinke K, Schep S A, Tominaga K, Van Dam A A, Van Nes E H, Wells S A, Janse J H. 2010. Challenges and opportunities for integrating lake ecosystem modelling approaches. Aquat. Ecol., 44 (3): 633–667.Google Scholar
  35. Morris M D. 1991. Factorial sampling plans for preliminary computational experiments. Technometrics, 33 (2): 161–174.Google Scholar
  36. Paerl H W, Huisman J. 2008. Blooms like it hot. Science, 320 (5872): 57–58.Google Scholar
  37. Prokopkin I G, Barkhatov Y V, Khromechek E B. 2014. A onedimensional model for phytoflagellate distribution in the meromictic lake. Ecol. Modell., 288: 1–8.Google Scholar
  38. Prokopkin I G, Mooij W M, Janse J H, Degermendzhy A G. 2010. A general one–dimensional vertical ecosystem model of Lake Shira (Russia, Khakasia): description, parametrization and analysis. Aquat. Ecol., 44 (3): 585–618.Google Scholar
  39. Rinke K, Yeates P, Rothhaupt K O. 2010. A simulation study of the feedback of phytoplankton on thermal structure via light extinction. Freshw. Biol., 55 (8): 1 674–1 693.Google Scholar
  40. Robertson D M, Ragotzkie R A. 1990. Changes in the thermal structure of moderate to large sized lakes in response to changes in air temperature. Aquat. Sci., 52 (4): 360–380.Google Scholar
  41. Rogozin D Y, Genova S N, Gulati R D, Degermendzhy A G. 2010. Some generalizations based on stratification and vertical mixing in meromictic Lake Shira, Russia, in the period 2002–2009. Aquat. Ecol., 44 (3): 485–496.Google Scholar
  42. Rogozin D Y, Tarnovsky M O, Belolipetskii V M, Zykov V V, Zadereev E S, Tolomeev A P, Drobotov A V, Barkhatov Y V, Gaevsky N A, Gorbaneva T B, Kolmakova A A, Degermendzhi A G. 2017. Disturbance of meromixis in saline Lake Shira (Siberia, Russia): possible reasons and ecosystem response. Limnologica Limnol. Ecol. Manage. Inland Waters, 66: 12–23.Google Scholar
  43. Rogozin D Y, Zykov V V, Degermendzhi A G. 2012. Ecology of purple sulfur bacteria in the highly stratified meromictic Lake Shunet (Siberia, Khakassia) in 2002–2009. Microbiology, 81 (6): 727–735.Google Scholar
  44. Saltelli A, Tarantola S, Campolongo F, Ratto M. 2004. Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models. John Wiley & Sons, Ltd., Chichester. 217p.Google Scholar
  45. Shimoda Y, Azim M E, Perhar G, Ramin M, Kenney M A, Sadraddini S, Gudimov A, Arhonditsis G B. 2011. Our current understanding of lake ecosystem response to climate change: what have we really learned from the north temperate deep lakes? J. Great Lakes Res., 37 (1): 173–193.Google Scholar
  46. Straile D. 2000. Meteorological forcing of plankton dynamics in a large and deep continental European lake. Oecologia, 122 (1): 44–50.Google Scholar
  47. Tolomeyev A P. 2002. Phytoplankton diet of Arctodiaptomus salinus (Copepoda, Calanoida) in lake Shira (Khakasia). Aquat. Ecol., 36 (2): 229–234.Google Scholar
  48. Weyhenmeyer G A, Blenckner T, Pettersson K. 1999. Changes of the plankton spring outburst related to the North Atlantic Oscillation. Limnol. Oceanogr., 44 (7): 1 788–1 792.Google Scholar
  49. Winder M, Schindler D E. 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology, 85 (8): 2 100–2 106.Google Scholar
  50. Zadereev E S, Boehrer B, Gulati R D. 2017a. Introduction: meromictic lakes, their terminology and geographic distribution. In: Gulati R D, Zadereev E S, Degermendzhi A G eds. Ecology of Meromictic Lakes. Springer, Cham. p.1–11.Google Scholar
  51. Zadereev E S, Gulati R D, Camacho A. 2017b. Biological and ecological features, trophic structure and energy flow in meromictic lakes. In: Gulati R D, Zadereev E S, Degermendzhi A G eds. Ecology of Meromictic Lakes. Springer, Cham. p.61–86.Google Scholar
  52. Zadereev E S, Tolomeev A P, Drobotov A V, Kolmakova A A. 2014. Impact of weather variability on spatial and seasonal dynamics of dissolved and suspended nutrients in water column of meromictic Lake Shira. Contemp. Probl. Ecol., 7 (4): 384–396.Google Scholar
  53. Zadereev Y S, Tolomeyev A P. 2007. The vertical distribution of zooplankton in brackish meromictic lake with deepwater chlorophyll maximum. Hydrobiologia, 576 (1): 69–82.Google Scholar
  54. Zotina T A, Tolomeyev A P, Degermendzhy N N. 1999. Lake Shira, a Siberian salt lake: ecosystem structure and function: 1. Major physico–chemical and biological features. Int. J. Salt Lake Res., 8 (3): 211–232.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Biophysics SB RASKrasnoyarsk Scientific CenterAkademgorodok, KrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations