Journal of Oceanology and Limnology

, Volume 36, Issue 6, pp 1962–1977 | Cite as

The characteristic pattern of multiple colored layers in coastal stratified lakes in the process of separation from the White Sea

  • Elena D. KrasnovaEmail author
  • Dmitry N. Matorin
  • Tatiana A. Belevich
  • Ludmila E. Efimova
  • Anastasiia V. Kharcheva
  • Natalia M. Kokryatskaya
  • Galina N. Losyuk
  • Daria A. Todorenko
  • Dmitry A. Voronov
  • Svetlana V. Patsaeva
Special Issue on Salt Lakes: From the 13th International Conference on Salt Lake Research Ulan-Ude, 20–25 August 2017 Guest editors: Aharon OREN, DENG Tianlong, Nikolai V. SHADRIN, ZHENG Mianping, Egor S. ZADEREEV


An unusual feature of the saline stratified lakes that were formed due to ongoing postglacial uplift on the White Sea coast is the presence of several differently colored thin layers in the zone with sharp gradients. Colored layers in five lakes at various stages of separation from the sea were investigated using optical microscopy, spectrophotometry, spectrofluorimetry, and photobiology. The upper greenish colored layer located in the aerobic strata of all lakes near the compensation depth of 1% light penetration contains green algae. In the chemocline, another layer, brightly green, red or pink, is dominated by mixotrophic flagellates. Despite the very low light intensities and the presence of H2S, active photosynthesis by these algae appears to be occurring, as indicated by high values of the maximum quantum yield of primary photochemistry, electron transport activity, photosynthetic activity of photosystem II, the fraction of active centers, and low values of heat dissipation. In the reduced zone of the chemocline, a dense green or brown suspension of anoxygenic phototrophs (green sulfur bacteria) is located.


algal blooms coastal lakes chemocline fluorescence kinetics Arctic White Sea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

343_2018_7323_MOESM1_ESM.pdf (603 kb)
The characteristic pattern of multiple colored layers in coastal stratified lakes in the process of separation from the White Sea


  1. Altenbach A V, Bernhard J M, Seckbach J. 2012. Anoxia: Evidence for Eukaryote Survival and Paleontological Strategies. Springer, Dordrecht. 648p.Google Scholar
  2. Anderson G C. 1969. Subsurface chlorophyll maximum in the northeast Pacific Ocean. Limnol. Oceanogr., 14 (3): 386–391.Google Scholar
  3. Behnke A, Bunge J, Barger K, Breiner H W, Alla V, Stoeck T. 2006. Microeukaryote community patterns along an O 2 /H 2 S gradient in a supersulfidic anoxic fjord (Framvaren, Norway). Appl. Environ. Microbiol., 72 (5): 3 626–3 636.Google Scholar
  4. Buvalyy S, Garmaeva S, Mardashova M, Krasnova E, Menshenina L. 2015. Macrobenthos composition at the shoreline of Kislo–Sladkoye Lake, separating from the White Sea. EARSeL eProceedings, 14 (S1): 63–70.Google Scholar
  5. Camacho A. 2006. On the occurrence and ecological features of deep chlorophyll maxima (DCM) in Spanish stratified lakes. Limnetica, 25 (1–2): 453–478.Google Scholar
  6. Castenholz R W, Utkilen H C. 1984. Loss of sulfide adaptation ability in a thermophilic Oscillatoria. Arch. Microbiol., 138 (4): 306–309.Google Scholar
  7. Clegg M R, Gaedke U, Boehrer B, Spijkerman E. 2012. Complementary ecophysiological strategies combine to facilitate survival in the hostile conditions of a deep chlorophyll maximum. Oecologia, 169 (3): 609–622.Google Scholar
  8. Cullen J J. 2015. Subsurface chlorophyll maximum layers: enduring enigma or mystery solved? Annu. Rev. Mar. Sci., 7: 207–239.Google Scholar
  9. Dubinin A V, Demidova T P, Kremenetskii V V, Kokryatskaya N M, Rimskaya–Korsakova M N, Yakushev E V. 2012. Determination of the reduced sulfur species in the anoxic zone of the Black Sea: a comparison of the spectrophotometry and iodometry techniques. Oceanology, 52 (2): 181–190.Google Scholar
  10. Falkowski P G, Raven J A. 2007. Aquatic Photosynthesis. Princeton University Press, Princeton. 488p.Google Scholar
  11. Flynn K J, Davidson K, Cunningham A. 1996. Prey selection and rejection by a microflagellate: implications for the study and operation of microbial food webs. J. Exp. Mar. Biol. Ecol., 196 (1–2): 357–372.Google Scholar
  12. Gentien P, Reguera B, Yamazaki H, Fernand L, Berdalet E, Raine R. 2008. Global ecology and oceanography of harmful algal blooms. GEOHAB Core Research Project: HABs in Stratified Systems. SCOR and IOC, Baltimore and Paris.Google Scholar
  13. Gervais F. 1998. Ecology of cryptophytes coexisting near a freshwater chemocline. Freshw. Biol., 39 (1): 61–78.Google Scholar
  14. Gies E A, Konwar K M, Beatty J T, Hallam S J, Löffler F E. 2014. Illuminating microbial dark matter in meromictic Sakinaw Lake. Appl. Environ. Microbiol., 80 (21): 6 807–6 818.Google Scholar
  15. Gorlenko V M, Vainshtein M B, Kachalkin V I. 1978. Microbiological characteristic of lake Mogilnoye. Arch. Hydrobiol., 81 (4): 475–492.Google Scholar
  16. Hakala A. 2004. Meromixis as a part of lake evolution—observations and a revised classification of true meromictic lakes in Finland. Boreal Environ. Res, 9: 37–53.Google Scholar
  17. Hamilton D P, O’Brien K R, Burford M A, Brookes J D, McBride C G. 2010. Vertical distributions of chlorophyll in deep, warm monomictic lakes. Aquat. Sci., 72 (3): 295–307.Google Scholar
  18. Hansen F C, Witte H J, Passarge J. 1996. Grazing in the heterotrophic dinoflagellate Oxyrrhis marina: size selectivity and preference for calcified Emiliania huxleyi cells. Aquat. Microb. Ecol., 10 (3): 307–313.Google Scholar
  19. Hansen P J. 1992. Prey size selection, feeding rates and growth dynamics of heterotrophic dinoflagellates with special emphasis on Gyrodinium spirale. Mar. Biol., 114 (2): 327–334.Google Scholar
  20. He G N, Zhang H, King J D, Blankenship R E. 2014. Structural analysis of the homodimeric reaction center complex from the photosynthetic green sulfur bacterium Chlorobaculum tepidum. Biochemistry, 53 (30): 4 924–4 930.Google Scholar
  21. Hillebrand H, Dürselen C D, Kirschtel D, Zohary T, Pollingher U. 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol., 3 5 (2): 403–424.Google Scholar
  22. Hutchinson G E. 1937. A contribution to the limnology of arid regions: primarily founded on observations made in the Lahontan Basin. Trans. Connecticut Acad. Arts Sci., 33: 47–132.Google Scholar
  23. Il’yash L V, Belevich T A, Matorin D N. 2013. Fluorescence parameters of White Sea phytoplankton under different nitrogen sources. Moscow Univ. Biol. Sci. Bull., 68 (1): 44–48.Google Scholar
  24. Jeong H J, Seong K A, Yoo D Y, Kim T H, Kang N S, Kim S, Park J Y, Kim J S, Kim G H, Song J Y. 2008. Feeding and grazing impact by small marine heterotrophic dinoflagellates on heterotrophic bacteria. J. Eukaryot. Microbiol., 55 (4): 271–288.Google Scholar
  25. John D M, Whitton B A, Brook A J. 2002. The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae. Cambridge University Press, Cambridge. 702p.Google Scholar
  26. Kharcheva A V, Krasnova E D, Voronov D A, Patsaeva S V. 2015. Spectroscopic study of the microbial community in chemocline zones of relic meromictic lakes separating from the White Sea. In: Proceedings of SPIE 9448, Saratov Fall Meeting 2014: Optical Technologies in Biophysics and Medicine XVI; Laser Physics and Photonics XVI; and Computational Biophysics. SPIE, Saratov, Russian Federation, Scholar
  27. Kharcheva A V, Zhiltsova A A, Lunina O N, Savvichev A S, Patsaeva S V. 2016. Quantification of two forms of green sulfur bacteria in their natural habitat using bacteriochlorophyll fluorescence spectra. In: Proceedings of SPIE 9917, Saratov Fall Meeting 2015: Third International Symposium on Optics and Biophotonics and Seventh Finnish–Russian Photonics and Laser Symposium (PALS). SPIE, Saratov, Russian Federation, https://doi. org/10.1117/12.2229848.Google Scholar
  28. Kokryatskaya N M, Zabelina S A, Savvichev A S, Morev O Y, Vorobjeva T Y. 2012. Seasonal biogeochemical and microbiological studies of small lakes in taiga zone of Northwestern Russian (Arkhangelsk Province). Water Resour., 39 (1): 105–117.Google Scholar
  29. Kondo R, Nakagawa A, Mochizuki L, Osawa K, Fujioka Y, Butani J. 2009. Dominant bacterioplankton populations in the meromictic Lake Suigetsu as determined by denaturing gradient gel electrophoresis of 16S rRNA gene fragments. Limnology, 10 (1): 63–69.Google Scholar
  30. Krasnova E D, Kharcheva A V, Milyutina I A, Voronov D A, Patsaeva S V. 2015a. Study of microbial communities in redox zone of meromictic lakes isolated from the White Sea using spectral and molecular methods. J. Mar. Biol. Assoc. UK, 95 (8): 1 579–1 590.Google Scholar
  31. Krasnova E D, Pantyulin A N, Belevich T A, Voronov D A, Demidenko N A, Zhitina L S, Ilyash L V, Kokryatskaya N M, Lunina O N, Mardashova M V, Prudkovsky A A, Savvichev A S, Filippov A S, Shevchenko V P. 2013. Multidisciplinary studies of the separating lakes at different stage of isolation from the White Sea performed in March 2012. Oceanolog y, 53 (5): 639–642.Google Scholar
  32. Krasnova E D, Pantyulin A N, Matorin D N, Todorenko D A, Belevich T A, Milyutina I A, Voronov D A. 2014. Cryptomonad alga Rhodomonas sp. ( Cryptophyta, Pyrenomonadaceae ) bloom in the redox zone of the basins separating from the White Sea. Microbiology, 83 (3): 270–277.Google Scholar
  33. Krasnova E, Voronov D, Frolova N, Pantyulin A, Samsonov T. 2015b. Salt lakes separated from the White Sea. EARSeL eProceedings, 14 (S1): 8–22.Google Scholar
  34. Lauro F M, DeMaere M Z, Yau S, Brown M V, Ng C, Wilkins D, Raftery M J, Gibson J A, Andrews–Pfannkoch C, Lewis M, Hoffman J M, Thomas T, Cavicchioli R. 2011. An integrative study of a meromictic lake ecosystem in Antarctica. ISME J., 5 (5): 879–895.Google Scholar
  35. Laybourn–Parry J, Marshall W A. 2003. Photosynthesis, mixotrophy and microbial plankton dynamics in two high Arctic lakes during summer. Polar Biol., 26 (8): 517–524.Google Scholar
  36. Laybourn–Parry J, Roberts E C, Bell E M. 2000. Mixotrophy as a survival strategy in Antarctic lakes. In: Davidson W, Howard–Williams C, Broady P eds. Antarctic Ecosystems: Models for Wider Ecological Understanding. The Caxton Press, Christchurch. p.33–40.Google Scholar
  37. Laybourn–Parry J. 2002. Survival mechanisms in Antarctic lakes. Phil os. Trans. R oy. Soc. Biol. Sic., 357 (1423): 863–869.Google Scholar
  38. Ludlam S D. 1996. The comparative limnology of high arctic, coastal, meromictic lakes. J. Paleolimnol., 16 (2): 111–131.Google Scholar
  39. Lunina O N, Savvichev A S, Krasnova E D, Kokryatskaya N M, Veslopolova E F, Kuznetsov B B, Gorlenko V M. 2016. Succession processes in the anoxygenic phototrophic bacterial community in lake Kislo–Sladkoe (Kandalaksha bay, White Sea). Microbiology, 85 (5): 570–582.Google Scholar
  40. Matorin D N, Antal T K, Ostrowska M, Rubin A B, Ficek D, Majchrowski R. 2004. Chlorophyll fluorimetry as a method for studying light absorption by photosynthetic pigments in marine algae. Oceanologia, 46 (4): 519–531.Google Scholar
  41. Matorin D N, Todorenko D A, Seifullina N K, Zayadan B K, Rubin A B. 2013. Effect of silver nanoparticles on the parameters of chlorophyll fluorescence and P 700 reaction in the green alga Chlamydomonas reinhardtii. Microbiology, 82 (6): 809–814.Google Scholar
  42. Menden–Deuer S, Lessard E J. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr., 45 (3): 569–579.Google Scholar
  43. Moiseenko T I, Gashkina N A. 2010. Formirovanie Khimicheskogo Sostava Vod Ozer v Usloviyakh Izmeneniya Okruzhayushchey Sredy [The Formation of the Chemical Composition of Lakes Water in a Changing Environment]. Nauka, Moscow. (in Russian)Google Scholar
  44. Mori Y, Kataoka T, Okamura T, Kondo R. 2013. Dominance of green sulfur bacteria in the chemocline of the meromictic Lake Suigetsu, Japan, as revealed by dissimilatory sulfite reductase gene analysis. Arch. Microbiol., 195 (5): 303–312.Google Scholar
  45. Nakajima Y, Shimizu H, Ogawa N O, Sakamoto T, Okada H, Koba K, Kitazato H, Ohkouchi N. 2004. Vertical distributions of stable isotopic compositions and bacteriochlorophyll homologues in suspended particulate matter in saline meromictic Lake Abashiri. Limnology, 5 (3): 185–189.Google Scholar
  46. Neklyudov I M, Borts B V, Polevich O V, Tkachenko V I, Shilyaev B A. 2006. An alternative hydrogen sulfide energy of Black sea. The state, problems and perspectives. Int. Sci. J. Altern. Energy Ecol. Ecology ( Sarov, Russ. Fed.), 12 (44): 23–30.Google Scholar
  47. Okada M, Taniuchi Y, Murakami A, Takaichi S, Ohtake S, Ohki K. 2007. Abundance of picophytoplankton in the halocline of a meromictic lake, Lake Suigetsu, Japan. Limnology, 8 (3): 271–280.Google Scholar
  48. Oren A, Padan E, Malkin S. 1979. Sulfide inhibition of photosystem II in cyanobacteria (blue–green algae) and tobacco chloroplasts. Biochim. Biophys. Acta, 546 (2): 270–279.Google Scholar
  49. Orf G S, Blankenship R E. 2013. Chlorosome antenna complexes from green photosynthetic bacteria. Photosynth. Res., 116 (2–3): 315–331.Google Scholar
  50. Overmann J, Beatty J T, Hall K J, Pfennig N, Northcote T G. 1991. Characterization of a dense, purple sulfur bacterial layer in a meromictic salt lake. Limnol. Oceanogr., 36 (5): 846–859.Google Scholar
  51. Overmann J, Garcia–Pichel F. 2000. The phototrophic way of life. In: Rosenberg E, DeLong E F, Lory S, Stackebrand E, Thompson F eds. The Prokaryotes: Prokaryotic Communities and Ecophysiology. Springer, New York. p.203–257.Google Scholar
  52. Pancaldi S, Baldisserotto C, Ferroni L, Bonora A, Fasulo M P. 2002. Room temperature microspectrofluorimetry as a useful toolfor studying the assembly of the PSII chlorophyll–protein complexes in single living cells of etiolated Euglena gracilis Klebs during the greening process. J. Exp. Bot., 53 (375): 1 753–1 763.Google Scholar
  53. Rogozin D Y, Trusova M Y, Khromechek E B, Degermendzhy A G. 2010. Microbial community of the chemocline of the meromictic lake Shunet (Khakassia, Russia) during summer stratification. Microbiology, 79 (2): 253–261.Google Scholar
  54. Sapozhnikov V V. 2003. Rukovodstvo po khimicheskomu analizu morskikh i presnykh vod pri ekologicheskom monitoringe rybokhozyaistvennykh vodoemov i perspektivnykh dlya promysla raionov Mirovogo okeana (Guide on Chemical Analysis of Sea and Fresh Water in the Environmental Monitoring of Water Bodies Used for Fishery and Commercially Promising Regions of the World Ocean). VNIRO, Moscow. 202p. (in Russian)Google Scholar
  55. Shaporenko S I, Koreneva G A, Pantyulin A N, Pertsova N M. 2005. Characteristics of the ecosystems of water bodies separating from Kandalaksha Bay of the White Sea. Water Resour., 32 (5): 469–483.Google Scholar
  56. Simmonds B, Wood S A, Özkundakci D, Hamilton D P. 2015. Phytoplankton succession and the formation of a deep chlorophyll maximum in a hypertrophic volcanic lake. Hydrobiologia, 745 (1): 297–312.Google Scholar
  57. Strasser R J, Tsimilli–Michael M, Srivastava A. 2004. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G C, Govindjee eds. Chlorophyll a Fluorescence: a signature of Photosynthesis. Springer, Dordrecht. p.321–362.Google Scholar
  58. Strelkov P, Shunatova N, Fokin M, Usov N, Fedyuk M, Malavenda S, Lubina O, Poloskin A, Korsun S. 2014. Marine Lake Mogilnoe (Kildin Island, the Barents Sea): one hundred years of solitude. Polar Biol., 37 (3): 297–310.Google Scholar
  59. Subetto D A, Shevchenko V P, Ludikova A V, Kuznetsov D D, Sapelko T V, Lisitsyn A P, Evzerov V Y, Van Beek P, Souhaut M, Subetto G D. 2012. Chronology of isolation of the Solovetskii Archipelago lakes and current rates of lake sedimentation. Dokl. Earth Sci., 446 (1): 1 042–1 048.Google Scholar
  60. Tonolla M, Peduzzi S, Demarta A, Peduzzi R, Hahn D. 2004. Phototropic sulfur and sulfate–reducing bacteria in the chemocline of meromictic Lake Cadagno, Switzerland. J. Limnol., 63 (2): 161–170.Google Scholar
  61. Van Der Weij–De Wit C D, Doust A B, Van Stokkum I H M, Dekker J P, Wilk K E, Curmi P M G, Scholes G D, Van Grondelle R. 2006. How energy funnels from the phycoerythrin antenna complex to photosystem I and photosystem II in cryptophyte Rhodomonas CS24 cells. J. Phys. Chem. B, 110 (49): 25 066–25 073.Google Scholar
  62. Van Hove P, Belzile C, Gibson J A, Vincent W F. 2006. Coupled landscape–lake evolution in High Arctic Canada. Can. J. Earth Sci., 43 (5): 533–546.Google Scholar
  63. Vincent W F, Laybourn–Parry J. 2008. Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems. Oxford University Press, Oxford. 346p.Google Scholar
  64. Weller D, Doemel W, Brock T D. 1975. Requirement of low oxidation–reduction potential for photosynthesis in a bluegreen alga ( Phormidium sp.). Arch. Microbiol., 104 (1): 7–13.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Elena D. Krasnova
    • 1
    Email author
  • Dmitry N. Matorin
    • 1
  • Tatiana A. Belevich
    • 1
  • Ludmila E. Efimova
    • 2
  • Anastasiia V. Kharcheva
    • 3
  • Natalia M. Kokryatskaya
    • 4
  • Galina N. Losyuk
    • 4
  • Daria A. Todorenko
    • 1
  • Dmitry A. Voronov
    • 5
    • 6
  • Svetlana V. Patsaeva
    • 3
  1. 1.Biological Faculty of Lomonosov Moscow State UniversityLeninskye GoryMoscowRussia
  2. 2.Faculty of GeographyLomonosov Moscow State University; GSP-1MoscowRussia
  3. 3.Faculty of PhysicsLomonosov Moscow State UniversityMoscowRussia
  4. 4.N. Laverov Federal Center for Integrated Arctic ResearchRussian Academy of SciencesArkhangelskRussia
  5. 5.A. A. Kharkevich Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia
  6. 6.A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations