Journal of Oceanology and Limnology

, Volume 36, Issue 6, pp 1930–1940 | Cite as

Cladophora mats in a Crimean hypersaline lake: structure, dynamics, and inhabiting animals

  • Alexandr V. Prazukin
  • Elena V. Anufriieva
  • Nickolai V. ShadrinEmail author
Special Issue on Salt Lakes: From the 13th International Conference on Salt Lake Research Ulan-Ude, 20–25 August 2017 Guest editors: Aharon OREN, DENG Tianlong, Nikolai V. SHADRIN, ZHENG Mianping, Egor S. ZADEREEV


Filamentous green algae play an important functional role in element cycling and productivity in the different water bodies. In hypersaline lakes and lagoons of the Crimea, filamentous green algae are present and form bottom and floating mats that occupy large areas with high biomass, up to 4–5 kg (wet biomass)/m2. Cladophora spp. dominated in those mats. Five species of filamentous green algae (Chlorophyta) in Lake Chersonesskoye: Cladophora vadorum (Aresch.) Kütz., C. siwaschensisC. Meyer, C. echinus (Biasol.) Kütz., Ulothrix implexa (Kütz.) Kütz., Rhizoclonium tortuosum (Dillw.) Kütz., and seagrass (Angiospermae) Ruppia cirrhosa (Petagna) Grande were found. Cladophora spp. and R. cirrhosa were found in the lake throughout the year, other types of algae were encountered episodically. In most cases the biomass of bottom mat exceeded that of the floating mat. In general, the total biomass of the bottom and floating mats in the lake areas at depths up to 30 cm was in a stable range of values from 100 to 290 mg (dry weight)/cm 2. Animal and infusorian average abundance in mats reach high values: infusorians—up to 15 000 000 ind./m2, Cletocamptus retrogressus (Copepoda, Harpacticoida)—up to 730 000 ind./m2, Eucypris mareotica (Ostracoda)—up to 91 000 ind./m2 and Chironomidae larvae (Insecta, Diptera)—up to 140 ind./m2. Those values were much higher than in the plankton.


green algae mats hypersaline lake photosynthesis invertebrates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author thanks to anonymous reviewers for valuable comments. The study was carried under support of the Russian Academy of Sciences for the A. O. Kovalevsky Institute of Marine Biological Research of RAS.


  1. Anufriieva E V, Shadrin N V. 2012. Crustacean diversity in hypersaline Chersonessus Lake (Crimea). Optimization and Protection of Ecosystems, 7: 55–61. (in Russian)Google Scholar
  2. Anufriieva E V. 2015. Do copepods inhabit hypersaline waters worldwide? A short review and discussion. Chinese Journal of Oceanology and Limnology, 33 (6): 1 354–1 361.CrossRefGoogle Scholar
  3. Anufriieva E. 2014. Copepods in hypersaline waters worldwide: diversity, environmental, social, and economic roles. Acta Geologica Sinica ( English Edition ), 88 (S1): 43–45.Google Scholar
  4. Balushkina E V, Golubkov S M, Golubkov M S, Litvinchuk L F, Shadrin N V. 2009. Effect of abiotic and biotic factors on the structural and functional organization of the saline lake ecosystems. Zhurnal Obshchei Biologii, 70 (6): 504–514. (in Russian)Google Scholar
  5. Batogova E A, Gerasimova O V, Shadrin N V. 2009. Cladophora mats as unique communities of hypersaline lakes. In: Proceedings of the International Conference of Young Scientists “Actual problems of botany and ecology” (11–1. August 2009, Kremenets). Ternopil. p.17–18.Google Scholar
  6. Berner T, Dubinsky Z, Wyman K, Falkowski P G. 1989. Photoadaptation and the “package” effect in Dunaliella ter t iolecta (Chlorophyceae). Journal of Phycology, 25 (1): 70–78.CrossRefGoogle Scholar
  7. Curiel D, Rismondo A, Bellemo G, Marzocchi M. 2004. Macroalgal biomass and species variations in the Lagoon of Venice (Northern Adriatic Sea, Italy): 1981–1998. Scientia Marina, 68 (1): 57–67.CrossRefGoogle Scholar
  8. Dondajewska R, Frankowski T, Wojak P. 2007. Changes in the vegetation of filamentous green algae in the Antoninek preliminary reservoir. Oceanological and Hydrobiological Studies, 36 (S1): 121–128.Google Scholar
  9. Eiseltová M, Pokorný J. 1994. Filamentous algae in fish ponds of the Třeboň Biosphere Reserve–ecophysiological study. Vegetatio, 113 (2): 155–170.Google Scholar
  10. Gordon D M, Birch P B, McComb A J. 1980. The effect of light temperature and salinity on photosynthetic rates of an estuarine cladophora. Botanica Marina, 23: 749–755.Google Scholar
  11. Green L, Fong P. 2015. The good, the bad and the Ulva: the density dependent role of macroalgal subsidies in influencing diversity and trophic structure of an estuarine community. Oikos, 125 (7): 988–1 000, https://doi. org/10.1111/oik.02860.CrossRefGoogle Scholar
  12. Gubanov V I, Bobko NI. 2012. Hydrological and hydrochemical characteristics of the salt lake at Cape Сhersones (Sevastopol, Crimea). Mar. Ecol. J., 11 (4): 18–26. (in Russian)Google Scholar
  13. Gubelit Y I, Berezina N A. 2010. The causes and consequences of algal blooms: the Cladophora glomerata bloom and the Neva estuary (eastern Baltic Sea). Marine Pollution Bulletin, 61 (4–6): 183–188.CrossRefGoogle Scholar
  14. Hammer U T, Shamess J, Haynes R C. 1983. The distribution and abundance of algae in saline lakes of Saskatchewan, Canada. Hydrobiologia, 105 (1): 1–26.CrossRefGoogle Scholar
  15. Higgins S N, Pennuto C M, Howell E T, Lewis T W, Makarewicz J C. 2012. Urban influences on Cladophora blooms in Lake Ontario. Journal of Great Lakes Research, 38 (S4): 116–123.CrossRefGoogle Scholar
  16. Ivanova M, Balushkina E, Basova S. 1994. Structural functional reorganization of ecosystem of hyperhaline Lake Saki (Crimea) at increased salinity. Russian Journal of Ecology, 3 (2): 111–126.Google Scholar
  17. Jiang H B, Qiu B S. 2005. Photosynthetic adaptation of a bloom–forming cyanobacterium Microcystis aeruginosa (Cyanophyceae) to prolonged UV–B exposure. J ournal of Phycology, 41 (5): 983–992.CrossRefGoogle Scholar
  18. Kolesnikova E A, Mazlumyan S A, Shadrin N V. 2008. Seasonal dynamics of meiobenthos fauna from a salt lake of the Crimea. In: Proceedings of the 5th International Conference of Environmental Micropaleontology, Microbiology and Meiobenthology (EMMM). University of Madras, Chennai, India. p.155–158.Google Scholar
  19. Krause–Jensen D, McGlathery K, Rysgaard S, Christensen P B. 1996. Production within dense mats of the filamentous macroalga Chaetomorpha linum in relation to light and nutrient availability. Marine Ecology Progress Series, 134: 207–216.CrossRefGoogle Scholar
  20. McGlathery K J, Krause–Jensen D, Rysgaard S, Christensen P B. 1997. Patterns of ammonium uptake within dense mats of the filamentous macroalga Chaetomorpha linum. Aquatic Botany, 59 (1–2): 99–115.CrossRefGoogle Scholar
  21. Okada H, Watanabe Y. 2002. Effect of physical factors on the distribution of filamentous green algae in the Tama River. Limnology, 3 (2): 121–126.CrossRefGoogle Scholar
  22. O'Neal S W, Lembi C A. 1983. Effect of simazine on photosynthesis and growth of filamentous algae. Weed Sci ence, 31 (6): 899–903.Google Scholar
  23. Pavlovskay T V, Prazukin A V, Shadrin N V. 2009. Seasonal phenomena in infusoria community in hypersaline Lake Khersonesskoye (Crimea). Marine Biological Journal, 8 (2): 53–63. (in Russian)Google Scholar
  24. Phillips G L, Eminson D, Moss B. 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquatic Botany, 4: 103–126.CrossRefGoogle Scholar
  25. Prazukin A V, Bobkova A N, Evstigneeva I K, Tankovska I N, Shadrin N V. 2008. Structure and seasonal dynamics of the phytocomponent of the bioinert system marine hypersaline lake on cape of Chersonesus (Crimea). Marine Biological Journal, 7 (1): 61–79. (in Russian)Google Scholar
  26. Prazukin A V. 2009. Photosynthetic activity of the vegetation in Lake Chersonesskoye (Crimea) and its structural and functional organization. Systems of controlfor environment. Tools and Monitoring, 5: 370–376. (in Russian)Google Scholar
  27. Prazukin A V. 2015. Ecological phytosystemology. Pero Press, Moscow. 375p. (in Russian)Google Scholar
  28. Saunders L L, Kilham S S, Winfield Fairchild G, Verb R. 2012. Effects of small–scale environmental variation on metaphyton condition and community composition. Freshw ater Biology, 57 (9): 1 884–1 895.CrossRefGoogle Scholar
  29. Scheffer M, Szabó S, Gragnani A, van Nes E H, Rinaldi S, Kautsky N, Norberg J, Roijackers R M M, Franken R J M. 2003. Floating plant dominance as a stable state. Proceedings of the National Academy of Sciences of the United States of America, 100 (7): 4 040–4 045.CrossRefGoogle Scholar
  30. Senicheva M I, Gubelit Y, Prazukin A V, Shadrin N V. 2008. Phytoplankton of the Crimean hypersaline lakes. In: Tokarev Yu N, Finenko Z Z, Shadrin N V eds. Microalgae of the Black Sea: Problems of biodiversity conservation and biotechnological use. ECOSI–Gidrofizika, Sevastopol. p.93–100. (in Russian)Google Scholar
  31. Shadrin N V, Anufriieva E V, Belyakov V P, Bazhora A I. 2017. Chironomidae larvae in hypersaline waters of the Crimea: diversity, distribution, abundance and production. The European Zoological Journal, 84 (1): 61–72, https://doi. org/10.1080/11250003.2016.1273974.CrossRefGoogle Scholar
  32. Shadrin N V, Anufriieva E V. 2013. Climate change impact on the marine lakes and their Crustaceans: the case of marine hypersaline Lake Bakalskoye (Ukraine). Turkish Journal of Fisheries and Aquatic Sciences, 13: 603–611.CrossRefGoogle Scholar
  33. Shadrin N V, Mykhodyuk O S, Naidanova O G, Voloshko L N, Gerasimenko L M. 2008. Benthic cyanobacteria in hypersaline lakes of the Crimea. In: Tokarev Yu N, Finenko Z Z, Shadrin N V eds. Microalgae of the Black Sea: Problems of Biodiversity conservation and biotechnological use. ECOSI–Gidrofizika, Sevastopol. p.100–112. (in Russian)Google Scholar
  34. Shadrin N V, Sergeeva N G, Latushkin A A, Kolesnikova Е А, Kipriyanova L M, Anufriieva E V, Chepyzhenko A A. 2016. Transformation of Gulf Sivash (the Sea of Azov) in conditions of growing salinity: changes of meiobenthos and other ecosystem components (2013–2015). Journal of Siberian Federal University Biology, 9 (4): 452–466. (in Russian)CrossRefGoogle Scholar
  35. Shadrin N V. 2017. Hypersaline lakes as polyextreme habitats for life. In: Zhemg M, Deng T, Oren A eds. Introduction to Salt Lake Sciences. Science Press, Beijing, China. p.173–178.Google Scholar
  36. Shadrin N. 2014. Alternative states of saline lake ecosystems and development of salinology. Acta Geologica Sin ica ( English Edition ), 88 (S1): 434–435.Google Scholar
  37. Song C L, Cao X Y, Zhou Y Y, Shadrin N. 2017. Filamentous green algae, extracellular alkaline phosphatases and some features of the phosphorus cycle in ponds. Marine Biological Journal, 2 (1): 66–78.CrossRefGoogle Scholar
  38. Velasco J, Millán A, Hernández J, Gutierrez C, Abellán P, Sánchez D, Ruiz M. 2006. Response of biotic communities to salinity changes in a Mediterranean hypersaline stream. Saline Systems, 2: 12,–1448–2–12.CrossRefGoogle Scholar
  39. Vergara J J, Pérez–Lloréns J L, Peralta G, Hernández I, Niell F X. 1997. Seasonal variation of photosynthetic performance and light attenuation in Ulva canopies from Palmones river estuary. Journal of Phycology, 33 (5): 773–779.CrossRefGoogle Scholar
  40. Young E B, Tucker R C, Pansch L A. 2010. Alkaline phosphatase in freshwater Cladophora–epiphyte assemblages: regulation in response to phosphorus supply and localization. Journal of Phycology, 46 (1): 93–101.CrossRefGoogle Scholar
  41. Zulkifly S, Hanshew A, Young E B, Lee P, Graham M E, Graham M E, Piotrowski M, Graham L E. 2012. The epiphytic microbiota of the globally widespread macroalga Cladophora glomerata (Chlorophyta, Cladophorales). American Journal of Botany, 99 (9): 1 541–1 552.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alexandr V. Prazukin
    • 1
  • Elena V. Anufriieva
    • 1
  • Nickolai V. Shadrin
    • 1
    Email author
  1. 1.The A. O. Kovalevsky Institute of Marine Biological Research of RASSevastopolRussia

Personalised recommendations