Journal of Oceanology and Limnology

, Volume 36, Issue 6, pp 2010–2017 | Cite as

The alternative saline lake ecosystem states and adaptive environmental management

  • Nickolai V. ShadrinEmail author
Special Issue on Salt Lakes: From the 13th International Conference on Salt Lake Research Ulan-Ude, 20–25 August 2017 Guest editors: Aharon OREN, DENG Tianlong, Nikolai V. SHADRIN, ZHENG Mianping, Egor S. ZADEREEV


Our sustainable environmental management must be based on adequate ecological concepts. The question arises: what concept is better to use for understanding and management of ecosystems? To look for an answer, we concentrate our attention on saline lakes. Every ecosystem has several alternative stable states and may demonstrate regime shifts, which are large, abrupt, persistent changes in the structure and function of a system. To understand the dynamics of ecosystems the Concept of Multiplicity of Ecosystem Alternative Stable States as a new ecological paradigm has been developed recently. The author analyzes the emerging paradigm using the case of saline lakes, and discusses how to base our adaptive environmental management on the developing paradigm. Different issues of development of the concept and its application to salinology as a scientific basis of an integrated management of a saline lake and its watershed are discussed. The concept may serve as one of the key theoretical elements of the scientific basis in sustainable environmental management.


adaptive management aquatic ecology environmental management saline lakes salinology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author is deeply grateful to all who assisted him in studying of salt lakes, as well as Mrs. Lilia Prazukina for the drawings made for this article and Dr. Bindy Datson (Australia) for her help to improve English of the manuscript.


  1. Adema E B, Grootjans A P, Petersen J, Grijpstra J. 2002. Alternative stable states in a wet calcareous dune slack in the Netherlands. J. Veg. Sci., 13 (1): 107–114.CrossRefGoogle Scholar
  2. Anufriieva E V, Shadrin N V, Shadrina S N. 2017. History of research on biodiversity in Crimean hypersaline waters. Arid Ecosyst., 7 (1): 52–58.CrossRefGoogle Scholar
  3. Anufriieva E V. 2015. Do copepods inhabit hypersaline waters worldwide? A short review and discussion. Chin. J. Oceanol. Limnol., 33 (6): 1 354–1 361.CrossRefGoogle Scholar
  4. Anufriieva E, Shadrin N. 2014. Resting stages of crustaceans in the Crimean hypersaline lakes (Ukraine) and their ecological role. Acta Geol. Sin., 88 (S1): 46–49.Google Scholar
  5. Balushkina E V, Golubkov S M, Golubkov M S, Litvinchuk L F, Shadrin N V. 2009. Effect of abiotic and biotic factors on the structural and functional organization of the saline lake ecosystems in Crimea. Zh. Obshch. Biol., 70 (6): 504–514. (in Russian)Google Scholar
  6. Beisner B E, Haydon D T, Cuddington K. 2003. Alternative stable states in ecology. Front. Ecol. Environ., 1 (7): 376–382.CrossRefGoogle Scholar
  7. Belmonte G, Moscatello S, Batogova E A, Pavlovskaya T, Shadrin N V, Litvinchuk L F. 2012. Fauna of hypersaline lakes of the Crimea (Ukraine). Thalass. Salent., 34: 11–24.Google Scholar
  8. Biggs R, Carpenter S R, Brock W A. 2009. Turning back from the brink: detecting an impending regime shift in time to avert it. Proc. Nat l. Acad. Sci. USA, 10 6 (3): 826–831.CrossRefGoogle Scholar
  9. Bindraban P S, Brink B T, Bai Z G, Bakkenes M, Van Beek R, Van Den M, Muller C, Schaphoff S, Sonneveld B, Stoorvogel J, Temme A. 2013. Mapping global ecosystem degradation and its impacts.–2013. Bindraban_et_al_final_10–12–12.pd.Google Scholar
  10. Blindow I, Andersson G, Hargeby A, Johansson S. 1993. Long–term pattern of alternative stable states in two shallow eutrophic lakes. Freshw. Biol., 30 (1): 159–167.CrossRefGoogle Scholar
  11. Boldgiv B, Bayartogtokh B, Bayarsaikhan U. 2005. Yellow dragon, green belt and alternative ecosystem states. Mong. J. Biol. Sci., 3 (2): 49–58.Google Scholar
  12. Capon S J, Lynch A J J, Bond N, Chessman B C, Davis J, Davidson N, Finlayson M, Gell P A, Hohnberg D, Humphrey C, Kingsford R T, Nielsen D, Thomson J R, Ward K, Nally R M. 2015. Regime shifts, thresholds and multiple stable states in freshwater ecosystems; a critical appraisal of the evidence. Sci. Total Environ., 534: 122–130.CrossRefGoogle Scholar
  13. Costanza R, Liu S. 2014. Ecosystem services and environmental governance: comparing China and the U.S. Asia Pac. Policy Stud., 1 (1): 160–170.CrossRefGoogle Scholar
  14. Crépin A S, Biggs R, Polasky S, Troell M, De Zeeuw A. 2012. Regime shifts and management. Ecol. Econ., 84: 15–22.CrossRefGoogle Scholar
  15. Cundill G, Cumming G S, Biggs D, Fabricius C. 2012. Soft systems thinking and social learning for adaptive management. Conserv. Biol., 26 (1): 13–20.CrossRefGoogle Scholar
  16. Davis J A, McGuire M, Halse S A, Hamilton D, Horwitz P, McComb A J, Froend R H, Lyons M, Sim L. 2003. What happens when you add salt: predicting impacts of secondary salinisation on shallow aquatic ecosystems by using an alternative–states model. Aust. J. Bot., 51 (6): 715–724.CrossRefGoogle Scholar
  17. Dent C L, Cumming G S, Carpenter S R. 2002. Multiple states in river and lake ecosystems. Philos. Trans. R oy. Soc. B, 357 (1421): 635–645.CrossRefGoogle Scholar
  18. Dublin H T, Sinclair A R E, McGlade J. 1990. Elephants and fire as causes of multiple stable states in the Serengeti–Mara woodlands. J. Anim. Ecol., 59 (3): 1 147–1 164.CrossRefGoogle Scholar
  19. Egorov A N, Kosmakov I V. 2010. Geography and A Use of Salt Lakes. Nauka, Novosibirsk. 184p. (in Russian).Google Scholar
  20. El–Shabrawy G M, Anufriieva E V, Germoush M O, Goher M E, Shadrin N V. 2015. Does salinity change determine zooplankton variability in the saline Qarun Lake (Egypt)? Chin. J. Oceanol. Limnol., 33 (6): 1 368–1 377.CrossRefGoogle Scholar
  21. Folke C, Fabricius C, Cundill G, Schultz L. 2005. Communities, ecosystems and livelihoods. In: Capistrano D, Samper C, Lee M, Raudsepp–Hearne C eds. Ecosystems and Human Well–being: Multiscale Assessment. Island Press, Washington. p.261–277.Google Scholar
  22. Gunderson L H, Holling C S. 2002. Panarchy: Understanding Transformations in Human and Natural Systems. Island Press, Washington. 507p.Google Scholar
  23. Habron G. 2003. Role of adaptive management for watershed councils. Environ. Manage., 31 (1): 29–41.CrossRefGoogle Scholar
  24. Haken H. 1993. Advanced Synergetics: Instability Hierarchies of Self–Organizing Systems and Devices. Springer–Verlag, New York. 356p.Google Scholar
  25. Hammer U T. 1986. Saline Lake Ecosystems of the World. Springer, Dordrecht. 616p.Google Scholar
  26. Hilderbrand R H, Watts A C, Randle A M. 2005. The myths of restoration ecology. Ecol. Soc., 10 (1): 19. http://www. Scholar
  27. Holling C S, Schindler D W, Walker B W, Roughgarden J. 1995. Biodiversity in the functioning of ecosystems: an ecological synthesis. In: Perrings C, Mäler K G, Folke C, Holling C S, Jansson B O eds. Biodiversity Loss: Economic and Ecological Issues. Cambridge University Press, Cambridge. p.44–83.Google Scholar
  28. Holling C S. 1973. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst., 4: 1–23.CrossRefGoogle Scholar
  29. Holling C S. 1978. Adaptive Environmental Assessment and Management. Wiley, New York. 377p.Google Scholar
  30. Holling C S. 2001. Understanding the complexity of economic, ecological, and social systems. Ecosystems, 4 (5): 390–405.CrossRefGoogle Scholar
  31. Jia Q X, Anufriieva E, Liu X F, Kong F J, Shadrin N. 2015. Intentional introduction of Artemia sinica (Anostraca) in the high–altitude Tibetan Lake Dangxiong Co: the new population and consequences for the environment and for humans. Chin. J. Oceanol. Limnol., 33 (6): 1 451–1 460.CrossRefGoogle Scholar
  32. Knowlton N. 1992. Thresholds and multiple stable states in coral reef community dynamics. Integr. Comp. Biol., 32 (6): 674–682.Google Scholar
  33. Krasilov V A. 1986. Unsolved Problems in the Theory of Evolution. DVNTs AN SSSR, Vladivostok. 139p. (in Russian).Google Scholar
  34. Lewontin R C. 1969. The meaning of stability. In: Woodwell G M, Smith H H eds. Diversity and Stability in Ecological Systems, Brookhaven Symposia in Biology, No. 22. Brookhaven Laboratories, New York. p.13–24.Google Scholar
  35. Lin H B, Thornton J A, Shadrin N. 2015. A watershed–based adaptive knowledge system for developing ecosystem stakeholder partnerships. Chin. J. Oceanol. Limnol., 33 (6): 1 476–1 488.CrossRefGoogle Scholar
  36. Lin Q Q, Xu L, Hou J Z, Liu Z W, Jeppesen E, Han B P. 2017. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: implication for the effect of climate warming. Water Res., 124: 618–629, 078.CrossRefGoogle Scholar
  37. Lyytimäki J, Hildén M. 2007. Thresholds of sustainability: policy challenges of regime shifts in coastal areas. Sustainability: Sci. Pract. Policy, 3 (2): 61–69.Google Scholar
  38. McGlathery K J, Reidenbach M A, D’Odorico P, Fagherazzi S, Pace M L, Porter J H. 2013. Nonlinear dynamics and alternative stable states in shallow coastal systems. Oceanography, 26 (3): 220–231.CrossRefGoogle Scholar
  39. Petraitis P S, Methratta E T, Rhile E C, Vidargas N A, Dudgeon S R. 2009. Experimental confirmation of multiple community states in a marine ecosystem. Oecologia, 161 (1): 139–148.CrossRefGoogle Scholar
  40. Prazukin A V, Bobkova A N, Evstigneeva I K, Tankovska I N, Shadrin N V. 2008. Structure and seasonal dynamics of the phytocomponent of the bioinert system marine hypersaline lake on cape of Chersonesus (Crimea). M orsk. E k ol. Zh., 7 (1): 61–79.Google Scholar
  41. Prigogine I, Stengers I. 1984. Order Out of Chaos. Heinemann, London. 349p.Google Scholar
  42. Rumyantsev V A, Drabkova V G, Izmaylova A V. 2015. Lakes of the European part of Russia. Lena, St. Petersburg. 392p. (in Russian).Google Scholar
  43. Samylina O S, Gerasimenko L M, Shadrin N V. 2010. Comparative characteristic of the phototroph communities from the mineral lakes of Crimea (Ukraine) and Altai region (Russia). Int. J. Algae, 12 (2): 142–158.CrossRefGoogle Scholar
  44. Scheffer M, Carpenter S, Foley J A, Folke C, Walker B. 2001. Catastrophic shifts in ecosystems. Nature, 413 (6856): 591–596.CrossRefGoogle Scholar
  45. Scheffer M. 2001. Alternative attractors of shallow lakes. Sci. World J., 1: 254–263.CrossRefGoogle Scholar
  46. Schmitz O J. 2010. Resolving Ecosystem Complexity. Princeton University Press, Princeton. 192p.Google Scholar
  47. Shadrin N V, Anufriieva E V, Amat F, Eremin O Y. 2015b. Dormant stages of crustaceans as a mechanism of propagation in the extreme and unpredictable environment in the Crimean hypersaline lakes. Chin. J. Oceanol. Limnol., 33 (6): 1 362–1 367.CrossRefGoogle Scholar
  48. Shadrin N V, Anufriieva E V, Belyakov V P, Bazhora A I. 2017b. Chironomidae larvae in hypersaline waters of the Crimea: diversity, distribution, abundance and production. Eur. Zool. J., 84 (1): 61–72.CrossRefGoogle Scholar
  49. Shadrin N V, Anufriieva E V, Shadrina S N. 2017a. Brief review of phototrophs in the Crimean hypersaline lakes and lagoons: diversity, ecological role, the possibility of using. Mar. Biol. J., 2 (2): 80–85.CrossRefGoogle Scholar
  50. Shadrin N V, Anufriieva E V. 2012. Review of the biogeography of the genus Artemia Leach, 1819 (Crustacea, Anostraca) in Russia. Int. J. Artemia Biol., 2 (1): 51–61.Google Scholar
  51. Shadrin N V, Anufriieva E V. 2013. Climate change impact on the marine lakes and their crustaceans: the case of marine hypersaline Lake Bakalskoye (Ukraine). Turk. J. Fish. Aquat. Sci., 13: 603–611.CrossRefGoogle Scholar
  52. Shadrin N V, Anufriieva E V. 2016. Why do we need to pay more attention to study the saline lakes? SILNews, 61: 10–11.Google Scholar
  53. Shadrin N V, Mironov S S, Ferat T A. 2012. Interrelations between the losses of sandy beaches and biodiversity in seas: case of the Bakalskaya Spit (Crimea, Ukraine, Black sea). Turk. J. Fish. Aquat. Sci., 12: 411–415.CrossRefGoogle Scholar
  54. Shadrin N V. 2012. Ecosystem dynamics and evolution: multiplicity of steady states and tipping points. Necessity of new understanding. Morsk. Ekol. Zh., 11 (2): 85–95. (in Russian).Google Scholar
  55. Shadrin N V. 2013. Alternative stable states of lake ecosystems and critical salinities: is there a rigid connection? Proc. Z ool. Inst., (3): 214–221. (in Russian).Google Scholar
  56. Shadrin N V. 2017. Peculiarities of structure, functioning and dynamics of the salt lake ecosystems. In: Zheng M, Deng T, Oren A eds. Introduction to Salt lake Sciences. Science Press, Beijing. p.179–186.Google Scholar
  57. Shadrin N, Zheng M P, Oren A. 2015a. Past, present and future of saline lakes: research for global sustainable development. Chin. J. Ocea nol. Limnol., 33 (6): 1 349–1 353.CrossRefGoogle Scholar
  58. Suding K N, Gross K L, Houseman G R. 2004. Alternative states and positive feedbacks in restoration ecology. Trends Ecol. Evol., 19 (1): 46–53.CrossRefGoogle Scholar
  59. Walker B, Holling C S, Carpenter S R, Kinzig A. 2004. Resilience, adaptability and transformability in socialecological systems. Ecol. Soc., 9 (2): 5. http://www. Scholar
  60. Winberg G G. 1928. Planktonolgical and physico–chemical investigations of Pond Popov. In: Skadovskyi S N ed. A Use of Methods of Physical Chemistry to Study Biology of Freshwaters. Institute of National Health, Moscow. p.352–364. (in Russian).Google Scholar
  61. Zagorodnyaya Y A, Batogova E A, Shadrin N V. 2008. Longterm transformation of zooplankton in the hypersaline lake Bakalskoe (Crimea) under salinity fluctuations. Mar. Ecol. J., 7 (4): 41–50.Google Scholar
  62. Zheng M P. 2001. On salinology. In: Melack J, Jellison R, Herbst D B eds. Saline Lakes. Springer, Dordrecht. p.339–347.Google Scholar
  63. Zheng M P. 2014. Saline Lakes and Salt Basin Deposits in China—Selected Works of Zheng Mianping. Science Press, Beijing. 321p.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Kovalevsky Institute of Marine Biological ResearchRussian Academy of SciencesSevastopolRussia

Personalised recommendations