Journal of Oceanology and Limnology

, Volume 36, Issue 6, pp 2002–2009 | Cite as

How can saline and hypersaline lakes contribute to aquaculture development? A review

  • Elena V. AnufriievaEmail author
Special Issue on Salt Lakes: From the 13th International Conference on Salt Lake Research Ulan-Ude, 20–25 August 2017 Guest editors: Aharon OREN, DENG Tianlong, Nikolai V. SHADRIN, ZHENG Mianping, Egor S. ZADEREEV


A considerable part of the world’s population is currently experiencing a severe scarcity of freshwater and nutrition. Inland aquaculture has the fastest growth in fresh waters, and this contributes to the eutrophication of freshwater bodies. The increase in freshwater aquaculture impacts on the increasing demand for fresh water. A way to overcome this is to develop aquaculture in saline lakes. This article discusses how saline and hypersaline lakes may contribute to overcome this problem and gives a list of fish and shrimp species that can be cultivated in saline lakes. Successful development of aquaculture depends on a healthy cultured stock of commercial fish and shrimps. A sustainable healthy stock of fish and shrimps can be only maintained using live food for the cultured fish larvae, fry and fingerlings. As well as Artemia spp. there are many other crustacean species with the potential for growing in hypersaline waters. At least 26 copepod species around the world can live at a salinity above 100 g/L with 12 species at a salinity higher than 200 g/L, and these all have excellent nutritional value. There is a high potential to use eukaryotic organisms of different taxa in saline / hypersaline aquaculture for food, agri-aquaculture, different industries and as food supplements.


aquaculture saline lakes shrimps fish Copepoda 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author thanks three anonymous reviewers for valuable comments and Bindy Datson (Australia) for her help to improve English.


  1. Adshead S A M. 1992. Salt and Civilization. Macmillan, London. 417p.CrossRefGoogle Scholar
  2. Alexander K A, Potts T P, Freeman S, Israel D, Johansen J, Kletou D, Meland M, Pecorino D, Rebours C, Shorten M, Angel D L. 2015. The implications of aquaculture policy and regulation for the development of integrated multitrophic aquaculture in Europe. Aquaculture, 443: 16–23.CrossRefGoogle Scholar
  3. Amarouayache M, Derbal F, Kara M H. 2012. Note on the carcinological fauna associated with Artemia salina (Branchiopoda, Anostraca) from Sebkha Ez–Zemoul (northeast Algeria). Crustaceana, 85 (2): 129–137.CrossRefGoogle Scholar
  4. Annabi–Trabelsi N, Rebai R K, Ali M, Subrahmanyam M N V, Belmonte G, Ayadi H. 2018. Egg production and hatching success of Paracartia grani (Copepoda, Calanoida, Acartiidae) in two hypersaline ponds of a Tunisian Solar Saltern. J. Sea Res., 134: 1–9.CrossRefGoogle Scholar
  5. Anufriieva E V, Shadrin N V. 2014a. Factors determining the average body size of geographically separated Arctodiaptomus salinus (Daday, 1885) populations. Zool. Res., 35 (2): 132–141.Google Scholar
  6. Anufriieva E V, Shadrin N V. 2014b. Arctodiaptomus salinus (Daday, 1885) (Calanoida, Copepoda) in saline water bodies of the Crimea. Morskoi Ecologicheskii Zhurnal, 13 (3): 5–11. (in Russian)Google Scholar
  7. Anufriieva E V. 2015. Do copepods inhabit hypersaline waters worldwide? A short review and discussion. Chin. J. Oceanol. Limnol., 33 (6): 1 354–1 361.CrossRefGoogle Scholar
  8. Baschini M, Piovano E L, López–Galindo A, Dietrich D, Setti M. 2012. Muds and salts from Laguna Mar Chiquita (or Mar de Ansenuza), Córdoba, Argentina: natural materials with potential therapeutic uses. Anales de Hidrolog í a M é dica, 5 (2): 123–129.Google Scholar
  9. Bayly I A E. 1972. Salinity tolerance and osmotic behavior of animals in athalassic saline and marine hypersaline waters. Ann. Rev. Ecol. Syst., 3 (1): 233–268.CrossRefGoogle Scholar
  10. Belmonte G, Moscatello S, Batogova E A, Pavlovskaya T, Shadrin N V, Litvinchuk L F. 2012. Fauna of hypersaline lakes of the Crimea (Ukraine). Thalassia Salentina, 34: 11–24.Google Scholar
  11. Briggs M, Funge–Smith S, Subasinghe R, Phillips M. 2004. Introductions and movement of Penaeus vannamei and Penaeus stylirostris in Asia and the Pacific. Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific. RAP Publication, Bangkok. Google Scholar
  12. Britton R H, Johnson A R. 1987. An ecological account of a Mediterranean salina: the Salin de Giraud, Camargue (S. France). Biol. Conserv., 42 (3): 185–230.CrossRefGoogle Scholar
  13. Chen J C, Lin J N. 1998. Osmotic concentration and tissue water of Penaeus chinensis juveniles reared at different salinity and temperature levels. Aquaculture, 164 (1–4): 173–181.CrossRefGoogle Scholar
  14. Dalla Via G J. 1986. Salinity responses of the juvenile penaeid shrimp Penaeus japonicus: I. oxygen consumption and estimations of productivity. Aquaculture, 55 (4): 297–306.CrossRefGoogle Scholar
  15. Das P, Mandal S C, Bhagabati S K, Akhtar M S, Singh S K. 2012. Important live food organisms and their role in aquaculture. Front. Aquacult., 5: 69–86.Google Scholar
  16. De Los Rios–Escalante P, Salgado I. 2012. Artemia (Crustacea, Anostraca) in Chile: a review of basic and applied biology. Lat. Am. J. Aquat. Res., 40 (3): 487–496.CrossRefGoogle Scholar
  17. Du S Y, Sun P X, Li J, Huo W H. 2006. Study on mineral black mud from Shanxi Yuncheng salt lake. Detergent & Cosmetics, 29 (3): 18–21. (in Chinese with English abstract)Google Scholar
  18. Duarte C M, Holmer M, Olsen Y, Soto D, Marba N, Guiu J, Black K, Karakassis I. 2009. Will the oceans help feed humanity? BioScience, 59 (11): 967–976.CrossRefGoogle Scholar
  19. Evjemo J O, Reitan K I, Olsen Y. 2003. Copepods as live food organisms in the larval rearing of halibut larvae ( Hippoglossus hippoglossus L.) with special emphasis on the nutritional value. Aquaculture, 227 (1–4): 191–210.CrossRefGoogle Scholar
  20. Fagbenro O A, Adedire C O, Owoseeni E A, Ayotunde E O. 1993. Studies on the biology and aquaculture potential of feral catfish Heterobranchus bidorsalis (Geoffroy St. Hilaire 1809) (Clariidae). Trop. Zool., 6 (1): 67–79.CrossRefGoogle Scholar
  21. FAO, IFAD, WFP. 2015. The state of food insecurity in the world 2015. Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress. Food and Agricultural Organization of the United Nations, Rome. 62p.Google Scholar
  22. FAO. 2009. The state of world fisheries and aquaculture 2008. FAO Fisheries and Aquaculture Department. Food and Agricultural Organization of the United Nations, Rome. 196p.Google Scholar
  23. FAO. 2014. The state of world fisheries and aquaculture 2014. Opportunities and challenges. Food and Agricultural Organization of the United Nations, Rome. 243p.Google Scholar
  24. FAO. 2015. FAO statistical pocketbook 2015: World food and agriculture. Food and Agriculture Organization of the United Nations, Rome. 236p.Google Scholar
  25. FAO. 2016. The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. Food and Agricultural Organization of the United Nations, Rome. 190p.Google Scholar
  26. Findlay D L, Podemski C L, Kasian S E M. 2009. Aquaculture impacts on the algal and bacterial communities in a small boreal forest lake. Can. J. Fish. Aquat. Sci., 66 (11): 1 936–1 948.CrossRefGoogle Scholar
  27. Guerra–García J M, Baeza–Rojano E, Jiménez–Prada P, Calero–Cano S, Cervera J L. 2017. Trends in aquaculture today. Marine amphipods as alternative resource. Biodivers. J., 8 (2): 395–398.Google Scholar
  28. Hammer U T. 1986. Saline Lake Ecosystems of the World. Springer, Dordrecht. 616p.Google Scholar
  29. He Z H, Qin J G, Wang Y, Jiang H, Wen Z. 2001. Biology of Moina mongolica (Moinidae, Cladocera) and perspective as live food for marine fish larvae: review. Hydrobiologia, 457 (1–3): 25–37.CrossRefGoogle Scholar
  30. Hecht T, Vys W, Britz P J. 1988. The culture of the African sharptooth catfish ( Clarias gariepinus ) in Southern Africa. South African National Scientific Programmes. Report No. 153. Available at: Environment/C%20%201gariepinus%20final%20BRBA. pdf. Accessed on 2017–09–19.Google Scholar
  31. Herrera A, Gómez M, Molina L, Otero F, Packard T. 2009. Advances in rearing techniques and analysis of nutritional quality of two mysids species present in Gran Canaria. Eur. Aquacult. Soc. Spec. Publ., 38: 171–174.Google Scholar
  32. Holling C S. 1978. Adaptive Environmental Assessment and Management. Wiley, London. 377p.Google Scholar
  33. Hotos G N, Vlahos N. 1998. Salinity tolerance of Mugil cephalus and Chelon labrosus (Pisces: Mugilidae) fry in experimental conditions. Aquaculture, 167 (3–4): 329–338.CrossRefGoogle Scholar
  34. Imsland A K, Foss A, Conceiçao L E C, Dinis M T, Delbare D, Schram E, Rema P, White P. 2003. A review of the culture potential of Solea solea and S. senegalensis. Rev. Fish Biol. Fish., 13 (4): 379–408.CrossRefGoogle Scholar
  35. Ivleva I V. 1969. Mass Cultivation of Invertebrates: Biology and Methods. Keter Press, Jerusalem. 158p.Google Scholar
  36. Jain A K, Mukherjee S C, Ayyappan S. 2003. Inland Salinewater Aquaculture: Research and Development. Indian Council of Agricultural Research, Mumbai. 58p.Google Scholar
  37. Jia Q X, Anufriieva E, Liu X F, Kong F J, Shadrin N. 2015a. Intentional introduction of Artemia sinica (Anostraca) in the high–altitude Tibetan Lake Dangxiong Co: the new population and consequences for the environment and for humans. Chin. J. Oceanol. Limnol., 33 (6): 1 451–1 460.CrossRefGoogle Scholar
  38. Jia Q X, Liu S S, Lv G J, Liu X F, Zhang Y S, Zheng M P. 2015b. Artemia population characteristics in different conditions, and environmental carrying capacity in small saline lakes in the Inner Mongolian desert. Acta Ecol. Sin., 35 (10): 3 364–3 375.Google Scholar
  39. Jiménez–Melero R, Gilbert J D, Guerrero F. 2013. Secondary production of Arctodiaptomus salinus in a shallow saline pond: comparison of methods. Mar. Ecol. Prog. Ser., 483: 103–116.CrossRefGoogle Scholar
  40. Johnson D W, Katavic I. 1986. Survival and growth of sea bass ( Dicentrarchus labrax ) larvae as influenced by temperature, salinity, and delayed initial feeding. Aquaculture, 52 (1): 11–19.CrossRefGoogle Scholar
  41. Kavembe G D, Meyer A, Wood C M. 2016. Fish populations in East African saline lakes. In: Schagerl M ed. Soda La kes of East Africa. Springer, Cham. p.227–257.CrossRefGoogle Scholar
  42. Khlebovich V V, Aladin N V. 2010. The salinity factor in animal life. Herald Russ. Acad. Sci., 80 (3): 299–304.CrossRefGoogle Scholar
  43. Kilambi R V, Zdinak A. 1980. The effects of acclimation on the salinity tolerance of grass carp, Ctenopharyngodon idella (Cuv. and Val.). J. Fish Biol., 16 (2): 171–175.CrossRefGoogle Scholar
  44. Koehn J D. 2004. Carp ( Cyprinus carpio ) as a powerful invader in Australian waterways. Freshwater Biol., 49 (7): 882–894.CrossRefGoogle Scholar
  45. Kolkovski S. 2011. An overview on desert aquaculture in Australia. In: Crespi V, Lovatelli A eds. Aquaculture in Desert and Arid Lands: Development Constraints and Opportunities. FAO, Rome. p.39–60.Google Scholar
  46. Kurlansky M. 2002. Salt: A World History. Walker, New York. 484p.Google Scholar
  47. Kurnakov N S, Kuznetsov V G, Dzens–Lytovsky A I, Ravich M I. 1936. The Crimean salt lakes. AN USSR Publ., Moscow. 278p. (in Russian).Google Scholar
  48. Likongwe J S, Stecko T D, Stauffer J R, Carline R F. 1996. Combined effects of water temperature and salinity on growth and feed utilization of juvenile Nile tilapia Oreochromis niloticus (Linneaus). Aquaculture, 146 (1–2): 37–46.CrossRefGoogle Scholar
  49. Lovejoy P E. 1986. Salt of the Desert Sun: A History of Salt Production and Trade in the Central Sudan. Cambridge University Press, Cambridge. 368p.Google Scholar
  50. Ma’or Z E, Magdassi S, Efron D, Yehuda S. 1996. Dead Sea mineral–based cosmetics–facts and illusions. Isr. J. Med. Sci., 32 Suppl: S28–S35.Google Scholar
  51. Marzetz V, Koussoroplis A–M, Martin–Creuzburg D, Striebel M, Wacker A. 2017. Linking primary producer diversity and food quality effects on herbivores: A biochemical perspective. Sci. Rep., 7: 11 035,–017–11183–3.CrossRefGoogle Scholar
  52. Mengistou S. 2016. Invertebrates of East African soda lakes. In: Schagerl M ed. Soda lakes of East Africa. Springer, Cham. p.205–226.CrossRefGoogle Scholar
  53. Oren A. 2010. Industrial and environmental applications of halophilic microorganisms. Environ. Technol., 31 (8–9): 825–834.CrossRefGoogle Scholar
  54. Poff N L. 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J. North Am. Benthol. Soc., 16 (2): 391–409.CrossRefGoogle Scholar
  55. Resley M J, Webb K A, Holt G J. 2006. Growth and survival of juvenile cobia, Rachycentron canadum, at different salinities in a recirculating aquaculture system. Aquaculture, 253 (1–4): 398–407.CrossRefGoogle Scholar
  56. Reyes J C R, Monteón C J L, Urreta H C, Dosta M D C M, de Oca G A R M. 2017. Population growth and protein and energy content of Proales similis (Rotifera: Monogononta) reared at different salinities. Turk. J. Fish. Aquat. Sci., 17 (4): 767–775.Google Scholar
  57. Rozema J, Flowers T. 2008. Crops for a salinized world. Science, 322 (5907): 1 478–1 480.CrossRefGoogle Scholar
  58. Sahandi J. 2011. Natural food production for aquaculture: cultivation and nutrition of Chironomid larvae (Insecta, Diptera). AES Bioflux, 3 (3): 268–271.Google Scholar
  59. Sardella B A, Matey V, Cooper J, Gonzalez R J, Brauner C J. 2004. Physiological, biochemical and morphological indicators of osmoregulatory stress in ‘California’ Mozambique tilapia ( Oreochromis mossambicus × O. urolepis hornorum ) exposed to hypersaline water. J. Exp. Biol., 207 (8): 1 399–1 413.CrossRefGoogle Scholar
  60. Schagerl M, Burian A. 2016. The ecology of African soda lakes: driven by variable and extreme conditions. In: Schagerl M ed. Soda Lakes of East Africa. Springer, Cham. p.295–320.Google Scholar
  61. Schagerl M, Renaut R W. 2016. Dipping into the soda lakes of East Africa. In: Schagerl M ed. Soda Lakes of East Africa. Springer, Cham. p.3–24.CrossRefGoogle Scholar
  62. Schmalenbach I, Buchholz F, Franke H D, Saborowski R. 2009. Improvement of rearing conditions for juvenile lobsters ( Homarus gammarus ) by co–culturing with juvenile isopods ( Idotea emarginata ). Aquaculture, 289 (3–4): 297–303.CrossRefGoogle Scholar
  63. Shaalan M, El–Mahdy M, Saleh M, El–Matbouli M. 2018. Aquaculture in Egypt: insights on the current trends and future perspectives for sustainable development. Rev. Fish. Sci. Aquacult., 26 (1): 99–110, 0/23308249.2017.1358696.CrossRefGoogle Scholar
  64. Shadrin N V, Anufriieva E V, Belyakov V P, Bazhora A I. 2017. Chironomidae larvae in hypersaline waters of the Crimea: diversity, distribution, abundance and production. The European Zoological Journal, 84 (1): 61–72, Scholar
  65. Shadrin N V, Anufriieva E V. 2016. Why do we need to pay more attention to study the saline lakes? SILNews, 61: 10–11.Google Scholar
  66. Shadrin N V, Anufriieva E V. 2017. Size polymorphism and fluctuating asymmetry of Artemia (Branchiopoda: Anostraca) populations from the Crimea. Journal of Siberian Federal University Biology, 10 (1): 114–126.CrossRefGoogle Scholar
  67. Shadrin N V, El–Shabrawy G M, Anufriieva E V, Goher M E, Ragab E. 2016. Long–term changes of physicochemical parameters and benthos in Lake Qarun (Egypt): can we make a correct forecast of ecosystem future? Knowl. Manag. Aquat. Ecosyst., 417: 18, Scholar
  68. Shadrin N V. 2017. Peculiarities of structure, functioning and dynamics of the salt lake. In: Zheng M, Deng T, Oren A eds. Introduction to Salt Lake Sciences. Science Press, Beijing. p.179–186.Google Scholar
  69. Shadrin N, Zheng M P, Oren A. 2015. Past, present and future of saline lakes: research for global sustainable development. Chin. J. Ocea nol. Limnol., 33 (6): 1 349–1 353.Google Scholar
  70. Shadrin N. 2014. Alternative states of saline lake ecosystems and development of salinology. Acta Geol. Sin. (English Edition), 88 (S1): 434–435.Google Scholar
  71. Shaw P C, Mark K K. 1980. Chironomid farming—a means of recycling farm manure and potentially reducing water pollution in Hong Kong. Aquaculture, 21 (2): 155–163.CrossRefGoogle Scholar
  72. Shearer T R, Wagstaff S J, Calow R, Stewart J A, Muir J F, Haylor G S, Brooks A C. 1997. The potential for aquaculture using saline groundwater. BGS Technical Report WC/97/58. British Geological Survey, Keyworth, Nottingham. 235p.Google Scholar
  73. Tolonen K E, Leinonen K, Erkinaro J, Heino J. 2018. Ecological uniqueness of macroinvertebrate communities in high–latitude streams is a consequence of deterministic environmental filtering processes. Aquat. Ecol., 52 (1): 17–33.CrossRefGoogle Scholar
  74. United Nations, Department of Economic and Social Affairs, Population Division. 2017. World Population Prospects: The 2017 Revision–Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248. 53p.Google Scholar
  75. Vijayan K K, Diwan A D. 1995. Influence of temperature, salinity, pH and light on molting and growth in the Indian white prawn Penaeus indicus (Crustacea: Decapoda: Penaeidae) under laboratory conditions. Asian Fish. Sci., 8: 63–72.Google Scholar
  76. Wang W N, Wang A L, Bao L, Wang J P, Liu Y, Sun R Y. 2004. Changes of protein–bound and free amino acids in the muscle of the freshwater prawn Macrobrachium nipponense in different salinities. Aquaculture, 233 (1–4): 561–571.CrossRefGoogle Scholar
  77. Williams E. 1999. The ethnoarchaeology of salt production at lake Cuitzeo, Michoacán, México. Latin American Antiquity, 10 (4): 400–414.CrossRefGoogle Scholar
  78. Williams W D. 1996. The largest, highest and lowest lakes of the world: saline lakes. I nternationale Vereinigung für Theoretische und Angewandte Limnologie: Verhandlungen, 26 (1): 61–79.Google Scholar
  79. Williams W D. 1998. Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia, 381 (1–3): 191–201.CrossRefGoogle Scholar
  80. Williams W D. 2001. Anthropogenic salinisation of inland waters. Hydrobiologia, 466 (1–3): 329–337.CrossRefGoogle Scholar
  81. WWAP (United Nations World Water Assessment Programme). 2015. The United Nations World Water Development Report 2015: Water for a Sustainable World. Paris, UNESCO. 123p. Scholar
  82. Xie B, Yu K J. 2007. Shrimp farming in China: operating characteristics, environmental impact and perspectives. Ocean Coast. Manag., 50 (7): 538–550.CrossRefGoogle Scholar
  83. Zacharia S, Kakati V S. 2004. Optimal salinity and temperature for early developmental stages of Penaeus merguiensis De man. Aquaculture, 232 (1–4): 373–382.CrossRefGoogle Scholar
  84. Zheng M. 2014. Saline Lakes and Salt Basin Deposits in China. Science Press, Beijing. 321p.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The A. O. Kovalevsky Institute of Marine Biological Research of RASSevastopolRussia

Personalised recommendations