Advertisement

Journal of Oceanology and Limnology

, Volume 36, Issue 3, pp 981–989 | Cite as

Otolith shape analysis for stock discrimination of two Collichthys genus croaker (Pieces: Sciaenidae,) from the northern Chinese coast

  • Bo Zhao (赵博)
  • Jinhu Liu (刘金虎)
  • Junjie Song (宋骏杰)
  • Liang Cao (曹亮)
  • Shuozeng Dou (窦硕增)
Article
  • 33 Downloads

Abstract

The otolith morphology of two croaker species ( Collichthys lucidus and Collichthys niveatus ) from three areas (Liaodong Bay, LD; Huanghe (Yellow) River estuary, HRE; Jiaozhou Bay, JZ) along the northern Chinese coast were investigated for species identification and stock discrimination. The otolith contour shape described by elliptic Fourier coefficients (EFC) were analysed using principal components analysis (PCA) and stepwise canonical discriminant analysis (CDA) to identify species and stocks. The two species were well differentiated, with an overall classification success rate of 97.8%. And variations in the otolith shapes were significant enough to discriminate among the three geographical samples of C. lucidus (67.7%) or C. niveatus (65.2%). Relatively high mis-assignment occurred between the geographically adjacent LD and HRE samples, which implied that individual mixing may exist between the two samples. This study yielded information complementary to that derived from genetic studies and provided information for assessing the stock structure of C. lucidus and C. niveatus in the Bohai Sea and the Yellow Sea.

Keyword

otolith size descriptors elliptic Fourier coefficients (EFC) stock structure Collichthys lucidus Collichthys niveatus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avigliano E, Domanico A, Sánchez S, Volpedo A V. 2017. Otolith elemental fingerprint and scale and otolith morphometry in Prochilodus lineatus provide identification of natal nurseries. Fish. Res., 186: 1–10.CrossRefGoogle Scholar
  2. Avigliano E, Velasco G, Volpedo A V. 2015. Use of lapillus otolith microchemistry as an indicator of the habitat of Genidens barbus from different estuarine environments in the southwestern Atlantic Ocean. Environ. Biol. Fish., 98 (6): 1 623–1 632.CrossRefGoogle Scholar
  3. Begg G A, Brown R W. 2000. Stock identification of haddock Melanogrammus aeglefinus on Georges bank based on otolith shape analysis. Trans. Am. Fish. Soc., 129 (4): 935–945.CrossRefGoogle Scholar
  4. Begg G A, Waldman J R. 1999. An holistic approach to fish stock identification. Fish. Res., 43 (1–3): 35–44.CrossRefGoogle Scholar
  5. Bian C W, Jiang W S, Pohlmann T, Sündermann J. 2016. Hydrography-physical description of the Bohai Sea. In: HarffJ, Zhang H eds. Environmental Processes and the Natural and Anthropogenic Forcing in the Bohai Sea, Eastern Asia. J. Coast. Res., 74: 1–12.CrossRefGoogle Scholar
  6. Cadrin S X, Friedland K D. 1999. The utility of image processing techniques for morphometric analysis and stock identification. Fish. Res., 43 (1–3): 129–139.CrossRefGoogle Scholar
  7. Campana S E, Casselman J M. 1993. Stock discrimination using otolith shape analysis. Can. J. Fish. Aquat. Sci., 50 (5): 1 062–1 083.CrossRefGoogle Scholar
  8. Campana S E. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser., 188: 188–263.CrossRefGoogle Scholar
  9. Capoccioni F, Costa C, Aguzzi J, Menesatti P, Lombarte A, Ciccotti E. 2011. Ontogenetic and environmental effects on otolith shape variability in three Mediterranean European eel (Anguilla anguilla, L.) local stocks. J. Exp. Mar. Bio l. Ecol., 397 (1): 1–7.CrossRefGoogle Scholar
  10. Cardinale M, Doering-Arjes P, Kastowsky M, Mosegaard H. 2004. Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Can. J. Fish. Aquat. Sci., 61 (2): 158–167.CrossRefGoogle Scholar
  11. Castonguay M, Simard P, Gagnon P. 1991. Usefulness of Fourier analysis of otolith shape for atlantic mackerel (Scomber scombrus) stock discrimination. Can. J. Fish. Aquat. Sci., 48 (2): 296–302.CrossRefGoogle Scholar
  12. Chen D G. 1991. Fisheries Ecology in the Yellow Sea and the Bohai Sea. China Ocean Press, Beijing, China. p.273-276. (in Chinese)Google Scholar
  13. Crampton J S. 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia, 28 (2): 179–186.CrossRefGoogle Scholar
  14. Dou S Z, Yu X, Cao L. 2012. Otolith shape analysis and its application in fish stock discrimination: a case study. Oceanol. Limnol. Sin., 43 (4): 701–712. (in Chinese with English abstract)Google Scholar
  15. Fay R R, Popper A N. 2000. Evolution of hearing in vertebrates: the inner ears and processing. Hear. Res., 149 (1–2): 1–10.CrossRefGoogle Scholar
  16. Ferguson G J, Ward T M, Gillanders B M. 2011. Otolith shape and elemental composition: complementary tools for stock discrimination of mulloway (Argyrosomus japonicus) in southern Australia. Fish. Res., 110 (1): 75–83.CrossRefGoogle Scholar
  17. He B Q, Li H Q. 1988. Stock assessment of Collichthys lucidus in pearl river esturary. J. Fish. China, 12 (2): 125–134. (in Chinese with English abstract)Google Scholar
  18. Hu Y, Zhang T, Yang G, Zhao F, Hou J L, Zhang L Z, Zhuang P. 2015. Assessment of resource situation of Collichthys lucidus in coastal waters of the Yangtze estuary. Chin. J. Appl. Ecol., 26 (9): 2 867–2 873. (in Chinese with English abstract)Google Scholar
  19. Izzo C, Ward T M, Ivey A R, Suthers I M, Stewart J, Sexton S C, Gillanders B M. 2017. Integrated approach to determining stock structure: implications for fisheries management of sardine, Sardinops sagax, in Australian waters. Rev. Fish. Biol. Fish., 27 (1): 267–284.CrossRefGoogle Scholar
  20. Lleonart J, Salat J, Torres G J. 2000. Removing allometric effects of body size in morphological analysis. J. Theor. Biol., 205 (1): 85–93.CrossRefGoogle Scholar
  21. Lombarte A, Lleonart J. 1993. Otolith size changes relatedwith body growth, habitat depth and temperature. Environ. Biol. Fish., 37 (3): 297–306.CrossRefGoogle Scholar
  22. Lord C, Morat F, Lecomte-Finiger R, Keith P. 2012. Otolith shape analysis for three Sicyopterus (Teleostei: Gobioidei: Sicydiinae) species from New Caledonia and Vanuatu. Environ. Biol. Fish., 93 (2): 209–222.CrossRefGoogle Scholar
  23. Lychakov D V, Rebane Y T. 2000. Otolith regularities. Hear. Res., 143 (1–2): 83–102.CrossRefGoogle Scholar
  24. Monteiro L R, Di Beneditto A P M, Guillermo L H, Rivera L A. 2005. Allometric changes and shape differentiation of sagitta otoliths in sciaenid fishes. Fish. Res., 74 (1–3): 288–299.CrossRefGoogle Scholar
  25. Parisi-Baradad V, Lombarte A, Garcia-Ladona E, Cabestany J, Piera J, Chic O. 2005. Otolith shape contour analysis using affine transformation invariant wavelet transforms and curvature scale space representation. Mar. Freshw. Res., 56 (5): 795–804.CrossRefGoogle Scholar
  26. Ponton D. 2006. Is geometric morphometrics efficient for comparing otolith shape of different fish species? J. Morphol., 267 (6): 750–757.CrossRefGoogle Scholar
  27. Reichenbacher B, Sienknecht U, Küchenhoff H, Fenske N. 2007. Combined otolith morphology and morphometry for assessing taxonomy and diversity in fossil and extant killifish (Aphanius, † Prolebias). J. Morphol., 268 (10): 898–915.CrossRefGoogle Scholar
  28. Škeljo F, Ferri J. 2012. The use of otolith shape and morphometry for identification and size-estimation of five wrasse species in predator-prey studies. J. Appl. Ichthyol., 28 (4): 524–530.CrossRefGoogle Scholar
  29. Stransky C, MacLellan S E. 2005. Species separation and zoogeography of redfish and rockfish (genus Sebastes) by otolith shape analysis. Can. J. Fish. Aquat. Sci., 62 (10): 2 265–2 276.CrossRefGoogle Scholar
  30. Sun X P. 2005. The Bohai Sea. In: Su J L ed. China Offshore Hydrology. China Ocean Press, Beijing, China. p.182-190. (in Chinese)Google Scholar
  31. Tang Y X. 2005. The Yellow Sea. In: Su J L ed. China Offshore Hydrology. China Ocean Press, Beijing, China. p.193-202. (in Chinese)Google Scholar
  32. The People’s Republic of China Ministry of Agriculture, Fisheries Bureau. 2006–2016. China Fisheries Yearbook. China Agriculture Press, Beijing, China. (in Chinese)Google Scholar
  33. Thresher R E. 1999. Elemental composition of otoliths as a stock delineator in fishes. Fish. Res., 43(1-3): 165–204.CrossRefGoogle Scholar
  34. Tracey S R, Lyle J M, Duhamel G. 2006. Application of elliptical Fourier analysis of otolith form as a tool for stock identification. Fish. Res., 77 (2): 138–147.CrossRefGoogle Scholar
  35. Tuset V M, Imondi R, Aguado G, Otero-Ferrer J L, Santschi L, Lombarte A, Love M. 2015. Otolith patterns of rockfishes from the Northeastern Pacific. J. Morphol., 276 (4): 458–469.CrossRefGoogle Scholar
  36. Vignon M, Morat F. 2010. Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Mar. Ecol. Prog. Ser., 411: 231–241.CrossRefGoogle Scholar
  37. Vignon M. 2012. Ontogenetic trajectories of otolith shape during shift in habitat use: interaction between otolith growth and environment. J. Exp. Mar. Biol. Ecol., 420-421: 421–26.CrossRefGoogle Scholar
  38. Wu Z X, Chen X L. 1991. Collichthy lucidus richardson: a preliminary study on the age and phasic growth of Collichthy lucidus. J. Zhejiang College Fish., 10 (2): 140–143. (in Chinese with English abstract)Google Scholar
  39. Yin L N. 2013. Studies on genetic diversity and population structure of Collicht hyslucidus. Ocean University of China, Qingdao. (in Chinese with English abstract)Google Scholar
  40. Yu X, Cao L, Liu J H, Zhao B, Shan X J, Dou S Z. 2014. Application of otolith shape analysis for stock discrimination and species identification of five goby species (Perciformes: Gobiidae) in the northern Chinese coastal waters. Chin. J. Oceanol. Limnol., 32 (5): 1 060–1 073.CrossRefGoogle Scholar
  41. Zhang C, Ye Z J, Li Z G, Wan R, Ren Y P, Dou S Z. 2016. Population structure of Japanese Spanish mackerel Scomberomorus niphonius in the Bohai Sea, the Yellow Sea and the East China Sea: evidence from random forests based on otolith features. Fish. Sci., 82 (2): 251–256.CrossRefGoogle Scholar
  42. Zhang C, Ye Z J, Wan R, Ma Q Y, Li Z G. 2014. Investigating the population structure of small yellow croaker (Larimichthys polyactis) using internal and external features of otoliths. Fish. Res., 153: 41–47.CrossRefGoogle Scholar
  43. Zhao M, Song W, Ma C Y, Zhang F Y, Jiang K J, Song Z M, Ma L B. 2015. Population genetic structure of Collichthys lucidus based on the mitochondrial cytochrome oxidase subunit I sequence. J. Fish. Sci. China, 22 (2): 233–242.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bo Zhao (赵博)
    • 1
    • 3
  • Jinhu Liu (刘金虎)
    • 1
    • 2
  • Junjie Song (宋骏杰)
    • 1
    • 3
  • Liang Cao (曹亮)
    • 1
    • 2
  • Shuozeng Dou (窦硕增)
    • 1
    • 2
    • 3
  1. 1.CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Laboratory for Marine Ecology and Environmental ScienceQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations