Characterization of dominant giant rod-shaped magnetotactic bacteria from a low tide zone of the China Sea
- 68 Downloads
- 1 Citations
Abstract
Magnetotactic bacteria are a group of Gram-negative bacteria that synthesize magnetic crystals, enabling them to navigate in relation to magnetic field lines. Morphologies of magnetotactic bacteria include spirillum, coccoid, rod, vibrio, and multicellular morphotypes. The coccid shape is generally the most abundant morphotype among magnetotactic bacteria. Here we describe a species of giant rod-shaped magnetotactic bacteria (designated QR-1) collected from sediment in the low tide zone of Huiquan Bay (Yellow Sea, China). This morphotype accounted for 90% of the magnetotactic bacteria collected, and the only taxonomic group which was detected in the sampling site. Microscopy analysis revealed that QR-1 cells averaged (6.71±1.03)×(1.54±0.20) μm in size, and contained in each cell 42–146 magnetosomes that are arranged in a bundle formed one to four chains along the long axis of the cell. The QR-1 cells displayed axial magnetotaxis with an average velocity of 70±28 μm/s. Transmission electron microscopy based analysis showed that QR-1 cells had two tufts of flagella at each end. Phylogenetic analysis of the 16S rRNA genes revealed that QR-1 together with three other rod-shaped uncultivated magnetotactic bacteria are clustered into a deep branch of Alphaproteobacteria.
Keyword
Alphaproteobacteria flagella motility rod-shaped magnetotactic bacteriaPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgement
We thank XU Jianhong for his assistance with biological sampling, JIANG Ming, LIU Jing, and MA Xicheng for their assistance with the TEM analysis, and LIU Wei for supporting our SEM observations.
References
- Abreu F, Silva K T, Leão P, Guedes I A, Keim C N, Farina M, Lins U. 2013. Cell adhesion, multicellular morphology, and magnetosome distribution in the multicellular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis. Microsc. Microanal., 19 (3): 535–543.CrossRefGoogle Scholar
- Achbergerová L, Nahálka J. 2011. Polyphosphate-an ancient energy source and active metabolic regulator. Microb. Cell. Fact., 10 (1): 63.CrossRefGoogle Scholar
- Amann R I, Krumholz L, Stahl D A. 1990. Fluorescentoligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol., 172 (2): 762–770.CrossRefGoogle Scholar
- Atsumi T, Maekawa Y, Yamada T, Kawagishi I, Imae Y, Homma M. 1996. Effect of viscosity on swimming by the lateral and polar flagella of Vibrio alginolyticus. J. Bacteriol., 178 (16): 5 024–5 026.CrossRefGoogle Scholar
- Balkwill D L, Maratea D, Blakemore R P. 1980. Ultrastructure of a magnetotactic spirillum. J. Bacteriol., 141 (3): 1 399–1 408.Google Scholar
- Bazylinski D A, Frankel R B. 2004. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol., 2 (3): 217–230.CrossRefGoogle Scholar
- Bazylinski D A, Williams T J, Lefèvre C T, Berg R J, Zhang C L, Bowser S S, Dean A J, Beveridge T J. 2013. Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov., Magnetococcales ord. nov.) at the base of the Alphaproteobacteria. Int. J. Syst. Evol. Microbiol., 63 (3): 801–808.CrossRefGoogle Scholar
- Chen Y R, Zhang R, Du H J, Pan H M, Zhang W Y, Zhou K, Li J H, Xiao T, Wu L F. 2015. A novel species of ellipsoidal multicellular magnetotactic prokaryotes from Lake Yuehu in China. Environ. Microbiol., 17 (3): 637–647.CrossRefGoogle Scholar
- Chen Y R, Zhang W Y, Zhou K, Pan H M, Du H J, Xu C, Xu J H, Pradel N, Santini C L, Li J H, Huang H, Pan Y X, Xiao T, Wu L F. 2016. Novel species and expanded distribution of ellipsoidal multicellular magnetotactic prokaryotes. Environ. Microbiol. Rep., 8 (2): 218–226.CrossRefGoogle Scholar
- DeLong E F, Frankel R B, Bazylinski D A. 1993. Multiple evolutionary origins of magnetotaxis in bacteria. Science, 259 (5096): 803–806.CrossRefGoogle Scholar
- Faivre D, Schüler D. 2008. Magnetotactic bacteria and magnetosomes. Chem. Rev., 108 (11): 4 875–4 898.CrossRefGoogle Scholar
- Flies C B, Peplies J, Schüler D. 2005. Combined approach for characterization of uncultivated magnetotactic bacteria from various aquatic environments. Appl. Environ. Microbiol., 71 (5): 2 723–2 731.CrossRefGoogle Scholar
- Frankel R B, Bazylinski D A, Johnson M S, Taylor B L. 1997. Magneto-aerotaxis in marine coccoid bacteria. Biophys. J., 73 (2): 994–1 000.CrossRefGoogle Scholar
- Frickmann H, Zautner A E, Moter A, Kikhney J, Hagen R M, Stender H, Poppert S. 2017. Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review. Crit. Rev. Microbiol., 43 (3): 263–293.CrossRefGoogle Scholar
- Henrichsen J. 1972. Bacterial surface translocation: a survey and a classification. Bacteriol. Rev., 36 (4): 478–503.Google Scholar
- Ji B Y, Zhang S D, Zhang W J, Rouy Z, Alberto F, Santini C L, Mangenot S, Gagnot S, Philippe N, Pradel N, Zhang L C, Tempel S, Li Y, Médigue C, Henrissat B, Coutinho P M, Barbe V, Talla E, Wu L F. 2017. The chimeric nature of the genomes of marine magnetotactic coccoid-ovoid bacteria defines a novel group of Proteobacteria. Environ. Microbiol., 19 (3): 1 103–1 119, https://doi.org/10.1111/1462-2920.13637.CrossRefGoogle Scholar
- Jogler C, Wanner G, Kolinko S, Niebler M, Amann R, Petersen N, Kube M, Reinhardt R, Schüler D. 2011. Conservation of proteobacterial magnetosome genes and structures in an uncultivated member of the deep-branching Nitrospira phylum. Proc. Natl. Acad. Sci. USA, 108 (3): 1 134–1 139.CrossRefGoogle Scholar
- Kearns D B. 2010. A field guide to bacterial swarming motility. Nat. Rev. Microbiol., 8 (9): 634–644.CrossRefGoogle Scholar
- Kolinko S, Jogler C, Katzmann E, Wanner G, Peplies J, Schüler D. 2012. Single-cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3. Environ. Microbiol., 14 (7): 1 709–1 721.CrossRefGoogle Scholar
- Kolinko S, Wanner G, Katzmann E, Kiemer F, Fuchs B M, Schüler D. 2013. Clone libraries and single cell genome amplification reveal extended diversity of uncultivated magnetotactic bacteria from marine and freshwater environments. Environ. Microbiol., 15 (5): 1 290–1 301.CrossRefGoogle Scholar
- Kulaev I S, Vagabov V M. 1983. Polyphosphate metabolism in micro-organisms. Adv Microb Physiol, 24: 24–83.Google Scholar
- Laflamme M, Xiao S H, Kowalewski M. 2009. Osmotrophy in modular Ediacara organisms. Proc. Natl. Acad. Sci. USA, 106 (34): 14 438–14 443.CrossRefGoogle Scholar
- Le Sage D, Arai K, Glenn D R, DeVience S J, Pham L M, Rahn-Lee L, Lukin M D, Yacoby A, Komeili A, Walsworth R L. 2013. Optical magnetic imaging of living cells. Nature, 496 (7446): 486–489.CrossRefGoogle Scholar
- Lefèvre C T, Abreu F, Schmidt M L, Lins U, Frankel R B, Hedlund B P, Bazylinski D A. 2010. Moderately thermophilic magnetotactic bacteria from hot springs in Nevada. Appl. Environ. Microbiol., 76 (11): 3 740–3 743.CrossRefGoogle Scholar
- Lefèvre C T, Bazylinski D A. 2013. Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol. Mol. Biol. R ev., 77 (3): 497–526.CrossRefGoogle Scholar
- Lefèvre C T, Bernadac A, Kui Y Z, Pradel N, Wu L F. 2009. Isolation and characterization of a magnetotactic bacterial culture from the Mediterranean Sea. Environ. Microbiol., 11 (7): 1 646–1 657.CrossRefGoogle Scholar
- Lefèvre C T, Frankel R B, Abreu F, Lins U, Bazylinski D A. 2011. Culture-independent characterization of a novel, uncultivated magnetotactic member of the Nitrospirae phylum. Environ. Microbiol., 13 (2): 538–549.CrossRefGoogle Scholar
- Lefèvre C T, Schmidt M L, Viloria N, Trubitsyn D, Schüler D, Bazylinski D A. 2012. Insight into the evolution of magnetotaxis in Magnetospirillum spp., based on mam gene phylogeny. Appl. Environ. Microbiol., 78 (20): 7 238–7 248.CrossRefGoogle Scholar
- Lefèvre C T, Wu L F. 2013. Evolution of the bacterial organelle responsible for magnetotaxis. Trends Microbiol., 21 (10): 534–543.CrossRefGoogle Scholar
- Lin W, Bazylinski D A, Xiao T, Wu L F, Pan Y X. 2014. Life with compass: diversity and biogeography of magnetotactic bacteria. Environ. Microbiol., 16 (9): 2 646–2 658.CrossRefGoogle Scholar
- Lin W, Li J H, Pan Y X. 2012. Newly isolated but uncultivated magnetotactic bacterium of the phylum Nitrospirae from Beijing, China. Appl. Environ. Microbiol., 78 (3): 668–675.CrossRefGoogle Scholar
- Lin W, Li J H, Schüler D, Jogler C, Pan Y X. 2009. Diversity analysis of magnetotactic bacteria in Lake Miyun, northern China, by restriction fragment length polymorphism. Syst. Appl. Microbiol., 32 (5): 342–350.CrossRefGoogle Scholar
- Lin W, Pan Y X. 2009. Uncultivated magnetotactic cocci from yuandadu park in beijing, China. Appl. Environ. Microbiol., 75 (12): 4 046–4 052.CrossRefGoogle Scholar
- Lin W, Pan Y X. 2015. A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria. Environ. Microbiol. Rep., 7 (2): 237–242.CrossRefGoogle Scholar
- Lin W, Wang Y Z, Gorby Y, Nealson K, Pan Y X. 2013. Integrating niche-based process and spatial process in biogeography of magnetotactic bacteria. Sci. Rep., 3 (1): 1643.CrossRefGoogle Scholar
- Mann S, Sparks N H C, Board R G. 1990. Magnetotactic bacteria: microbiology, biomineralization, palaeomagnetism and biotechnology. Adv. Microb. Physiol., 31: 31–125.Google Scholar
- Mao X, Liu X. 2015. An initial study of the influences of oxygen conditions on wild-type magnetotactic bacteria in sediment. Chin. Sci. Bull., 60 (1): 88–96. (in Chinese with English abstract)CrossRefGoogle Scholar
- Matsunaga T, Sakaguchi T, Tadokoro F. 1991. Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl. Microbiol. Biotechnol., 35 (5): 651–655.CrossRefGoogle Scholar
- Moench T T, Konetzka W A. 1978. A novel method for the isolation and study of a magnetotactic bacterium. Arch. Microbiol., 119 (2): 203–212.CrossRefGoogle Scholar
- Nan B Y, Zusman D R. 2016. Novel mechanisms power bacterial gliding motility. Mol. Microbiol., 101 (2): 186–193.CrossRefGoogle Scholar
- Pan H M, Zhu K L, Song T, Yu-Zhang K, Lefèvre C, Xing S, Liu M, Zhao S J, Xiao T, Wu L F. 2008. Characterization of a homogeneous taxonomic group of marine magnetotactic cocci within a low tide zone in the China Sea. Environ. Microbiol., 10 (5): 1 158–1 164.CrossRefGoogle Scholar
- Rodrigue S, Malmstrom R R, Berlin A M, Birren B W, Henn M R, Chisholm S W. 2009. Whole genome amplification and de novo assembly of single bacterial cells. PLoS One, 4 (9): e6864.CrossRefGoogle Scholar
- Schaechter M, Maaløe O, Kjeldgaard N O. 1958. Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J. Gen. Microbiol., 19 (3): 592–606.CrossRefGoogle Scholar
- Schüler D. 1999. Formation of magnetosomes in magnetotactic bacteria. J. Mol. Microbiol. Biotechnol., 1 (1): 79–86.Google Scholar
- Schüler D. 2002. The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense. Int. Microbiol., 5 (4): 209–214.CrossRefGoogle Scholar
- Schüler D. 2008. Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Mic robiol. Rev., 32 (4): 654–672.CrossRefGoogle Scholar
- Schulz H N, Jørgensen B B. 2001. Big bacteria. Annu. Rev. Microbiol., 55 (1): 105–137.CrossRefGoogle Scholar
- Schulz H N, Schulz H D. 2005. Large sulfur bacteria and the formation of phosphorite. Science, 307 (5708): 416–418.CrossRefGoogle Scholar
- Silva K T, Abreu F, Almeida F P, Keim C N, Farina M, Lins U. 2007. Flagellar apparatus of south-seeking many-celled magnetotactic prokaryotes. Microsc. Res. Tech., 70 (1): 10–17.CrossRefGoogle Scholar
- Spormann A M, Wolfe R S. 1984. Chemotactic, magnetotactic and tactile behaviour in a magnetic spirillum. FEMS Microbiol. Lett., 22 (3): 171–177.CrossRefGoogle Scholar
- Spring S, Amann R, Ludwig W, Schleifer K H, Petersen N. 1992. Phylogenetic diversity and identification of nonculturable magnetotactic bacteria. Sy st. Appl. Microbiol., 15 (1): 116–122.CrossRefGoogle Scholar
- Spring S, Amann R, Ludwig W, Schleifer K H, Schüler D, Poralla K, Petersen N. 1995. Phylogenetic analysis of uncultured magnetotactic bacteria from the alpha-subclass of Proteobacteria. Syst. Appl. Microbiol., 17 (4): 501–508.CrossRefGoogle Scholar
- Spring S, Amann R, Ludwig W, Schleifer K H, van Gemerden H, Petersen N. 1993. Dominating role of an unusual magnetotactic bacterium in the microaerobic zone of a freshwater sediment. Appl. Environ. Microbiol., 59 (8): 2 397–2 403.Google Scholar
- Spring S, Lins U, Amann R, Schleifer K H, Ferreira L C S, Esquivel D M S, Farina M. 1998. Phylogenetic affiliation and ultrastructure of uncultured magnetic bacteria with unusually large magnetosomes. Arch. Microbiol., 169 (2): 136–147.CrossRefGoogle Scholar
- Steinberger R E, Allen A R, Hansa H G, Holden P A. 2002. Elongation correlates with nutrient deprivation in pseudomonas aeruginosa-unsaturates biofilms. Microb. Ecol., 43 (4): 416–423.CrossRefGoogle Scholar
- Taheri-Araghi S, Bradde S, Sauls J T, Hill N S, Levin P A, Paulsson J, Vergassola M, Jun S. 2015. Cell-size control and homeostasis in bacteria. Curr. Biol., 25 (3): 385–391.CrossRefGoogle Scholar
- Taylor B L. 1983. How do bacteria find the optimal concentration of oxygen? Trends Biochem. Sci., 8 (12): 438–441.Google Scholar
- Turner L, Zhang R J, Darnton N C, Berg H C. 2010. Visualization of flagella during bacterial swarming. J. Bacteriol., 192 (13): 3 259–3 267.CrossRefGoogle Scholar
- Wadhams G H, Armitage J P. 2004. Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell Biol., 5 (12): 1 024–1 037.CrossRefGoogle Scholar
- Williams T J, Lefèvre C T, Zhao W D, Beveridge T J, Bazylinski D A. 2012. Magnetospira thiophila gen. nov., sp. nov., a marine magnetotactic bacterium that represents a novel lineage within the Rhodospirillaceae (Alphaproteobacteria). Int. J. Syst. Evol. Microbiol., 62 (10): 2 443–2 450.CrossRefGoogle Scholar
- Woyke T, Tighe D, Mavromatis K, Clum A, Copeland A, Schackwitz W, Lapidus A, Wu D Y, McCutcheon J P, McDonald B R, Moran N A, Bristow J, Cheng J F. 2010. One bacterial cell, one complete genome. PLoS One, 5 (4): e10314.CrossRefGoogle Scholar
- Xing S E, Pan H M, Zhu K L, Xiao T, Wu L F. 2008. Diversity of marine magnetotactic bacteria in the Huiquan bay near Qingdao city. Chin. High Technol. Lett., 18 (3): 312–317. (in Chinese with English abstract)Google Scholar
- Zhang W J, Li Y, Wu L F. 2014. Complex composition and exquisite architecture of bacterial flagellar propellers. Chin. Sci. Bull., 59 (20): 1 912–1 918. (in Chinese with English abstract)CrossRefGoogle Scholar
- Zhang W Y, Zhang S D, Xiao T, Pan Y X, Wu L F. 2010. Geographical distribution of magnetotactic bacteria. Environ. Sci., 31 (2): 450–458. (in Chinese with English abstract)Google Scholar
- Zhang W Y, Zhou K, Pan H M, Du H J, Chen Y R, Zhang R, Ye W N, Lu C J, Xiao T, Wu L F. 2013. Novel rod-shaped magnetotactic bacteria belonging to the class Alphaproteobacteria. Appl. Environ. Microbiol., 79 (9): 3 137–3 140.CrossRefGoogle Scholar
- Zhang W Y, Zhou K, Pan H M, Yue H D, Jiang M, Xiao T, Wu L F. 2012. Two genera of magnetococci with bean-like morphology from intertidal sediments of the Yellow Sea, China. Appl. Environ. Microbiol., 78 (16): 5 606–5 611.CrossRefGoogle Scholar
- Zhang X H. 2016. Marine Microbiology. 2 nd edn. Science Press, Beijing, China. p.10-11. (in Chinese)Google Scholar
- Zhou K, Pan H M, Yue H D, Xiao T, Wu LF. 2010. Architecture of flagellar apparatus of marine magnetotactic cocci from Qingdao. Mar. Sci., 34 (12): 88–92. (in Chinese with English abstract)Google Scholar
- Zhou K, Zhang W Y, Pan H M, Li J H, Yue H D, Xiao T, Wu L F. 2013. Adaptation of spherical multicellular magnetotactic prokaryotes to the geochemically variable habitat of an intertidal zone. Environ. Microbiol., 15 (5): 1 595–1 605.CrossRefGoogle Scholar
- Zhou K, Zhang W Y, Yu-Zhang K, Pan H M, Zhang S D, Zhang W J, Yue H D, Li Y, Xiao T, Wu L F. 2012. A novel genus of multicellular magnetotactic prokaryotes from the Yellow Sea. Environ. Microbiol., 14 (2): 405–413.CrossRefGoogle Scholar
- Zhu K L, Pan H M, Li J H, Yu-Zhang K, Zhang S D, Zhang W Y, Zhou K, Yue H D, Pan Y X, Xiao T, Wu L F. 2010. Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea. Res. Microbiol., 161 (4): 276–283.CrossRefGoogle Scholar