Advertisement

Journal of Oceanology and Limnology

, Volume 36, Issue 3, pp 1002–1012 | Cite as

Effects of probiotic on microfloral structure of live feed used in larval breeding of turbot Scophthalmus maximus

  • Yan Jiang (姜燕)
  • Zheng Zhang (张正)
  • Yingeng Wang (王印庚)
  • Yayun Jing (景亚运)
  • Meijie Liao (廖梅杰)
  • Xiaojun Rong (荣小军)
  • Bin Li (李彬)
  • Guiping Chen (陈贵平)
  • Hesen Zhang (张和森)
Article

Abstract

The effects of an exogenous probiotic (Bacillus amyloliquefaciens) on microbial community structure of Branchionus plicatils and Artemia sinica were evaluated in this study during turbot (Scophthalmus maximus) larval breeding. The analysis and comparison of the microfloral composition of live feed with probiotic was conducted using the Illumina HiSeq PE250. The abundance of microbial species and diversity of microflora in live feed with B. amyloliquefaciens were higher than those in the control. The microfloral composition was similar among the three replicate experimental groups of B. plicatils compared with the control after enrichment. Lactococcus, Pseudoalteromonas, and Alteromonas were always dominant. Additionally, some other bacterial species became dominant during the enrichment process. The microbial community during nutrient enrichment of A. sinica was rather similar among the three control replicates. Relative abundance of Cobetia sp., the most dominant species, was 54%–65.2%. Similarity in the microbial community was still high after adding B. amyloliquefaciens. Furthermore, Pseudoalteromonas and Alteromonas replaced Cobetia as the dominant species, and the abundance of Cobetia decreased to 4.3%–25.3%. Mean common ratios at the operational taxonomic unit level were 50%–60% between the two B. plicatils and A. sinica treatments. Therefore, the microbial community structure changed after adding B. amyloliquefaciens during nutrient enrichment of B. plicatils or A. sinica and tended to stabilize. Additionally, the abundance of Vibrio in any kind of live feed was not significantly different from that in the control. These results will help improve the microflora of B. plicatils and A. sinica and can be used to understand the multiple-level transfer role of probiotic species among probiotic products, microflora of live feed, and fish larvae.

Keyword

Branchionus plicatils Artemia sinica microfloral structure Bacillus amyloliquefaciens Scophthalmus maximus larval breeding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed Md S, Nour A M, Srour T M, Assem S, Ibrahim H A, El-Sayed H S. 2015. Greenwater, Marine Bacillus subtilis HS1 probiotic and synbiotic enriched artemia and rotifers improved European seabass Dicentrarchus labrax larvae early weaning length growth, survival, water and bacteriology quality. American Journal of Life Sciences, 3 (6–1): 45–52.CrossRefGoogle Scholar
  2. Allameh S K, Yusoff F M, Ringø E, Daud H M, Saad C R, Ideris A. 2016. Effects of dietary mono-and multiprobiotic strains on growth performance, gut bacteria and body composition of Javanese carp (Puntius gonionotus, Bleeker 1850). Aquaculture Nutrition, 22 (2): 367–373.CrossRefGoogle Scholar
  3. Asok A, Arshad E, Jasmin C, Pai S S, Singh I S B, Mohandas A, Anas A. 2012. Reducing Vibrio load in Artemia nauplii using antimicrobial photodynamic therapy: a promising strategy to reduce antibiotic application in shrimp larviculture. Microbial Biotechnology, 5 (1): 59–68.CrossRefGoogle Scholar
  4. Bakke I, Skjermo J, Vo T A, Vadstein O. 2013. Live feed is not a major determinant of the microbiota associated with cod larvae (Gadus morhua). Environmental M icrobiology Reports, 5 (4): 537–548.CrossRefGoogle Scholar
  5. Battaglene S C, Morehead D T, Cobcroft J M, Nichols P D, Brown M R, Carson J. 2006. Combined effects of feeding enriched rotifers and antibiotic addition on performance of striped trumpeter (Latris lineata) larvae. Aquaculture, 251 (2–4): 456–471.CrossRefGoogle Scholar
  6. Bergh Ø, Naas K E, Harboe T. 1994. Shift in the intestinal microflora of Atlantic halibut (Hippoglossus hippoglossus) larvae during first feeding. Canadian Journal of Fisheries and Aquatic Sciences, 51 (8): 1 899–1 903.CrossRefGoogle Scholar
  7. Cai Y M, Benno Y, Nakase T, Oh T K. 1998. Specific probiotic characterization of Weissella hellenica DS-12 isolated from flounder intestine. The Journal of General and Applied Microbiology, 44 (5): 311–316.CrossRefGoogle Scholar
  8. Campbell R, Adams A, Tatner M F, Chair M, Sorgeloos P. 1993. Uptake of Vibrio anguillarum vaccine by Artemia salina as a potential oral delivery system to fish fry. Fish & Shellfish Immun ology, 3 (6): 451–459.CrossRefGoogle Scholar
  9. Cao H P, He S, Wei R P, Diong M, Lu L Q. 2011. Bacillus amyloliquefaciens G1: a potential antagonistic bacterium against eel-pathogenic A eromonas hydrophila. Evidence-Based Complementary and Alternative Medicine, 2011: 824104.Google Scholar
  10. Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. Qiime allows analysis of high-throughput community sequencing data. Nature Methods, 7 (5): 335–336.CrossRefGoogle Scholar
  11. Carnevali O, Zamponi M C, Sulpizio R, Rollo A, Nardi M, Orpianesi C, Silvi S, Caggiano M, Polzonetti A M, Cresci A. 2004. Administration of probiotic strain to improve sea bream wellness during development. Aquaculture International, 12 (4–5): 377–386.CrossRefGoogle Scholar
  12. Chambers J R, Gong J. 2011. The intestinal microbiota and its modulation for Salmonella control in chickens. Food Research International, 44 (10): 3 149–3 159.CrossRefGoogle Scholar
  13. Chen S C, Liaw L L, Su H Y, Ko S C, Wu C Y, Chaung H C, Tsai Y H, Yang K L, Chen Y C, Chen T H, Lin G R, Cheng S Y, Lin Y D, Lee J L, Lai C C, Weng Y J, Chu S Y. 2002. Lactococcus garvieae, a cause of disease in grey mullet, Mugil cephalus L., in Taiwan. Journal of Fish Diseases, 25 (12): 727–732.CrossRefGoogle Scholar
  14. Chen S C, Lin Y D, Liaw L L, Wang P C. 2001. Lactococcus garvieae infection in the giant freshwater prawn Macrobranchium rosenbergii confirmed by polymerase chain reaction and 16S rDNA sequencing. Diseases of Aquatic Organisms, 45 (1): 45–52.CrossRefGoogle Scholar
  15. Das A, Nakhro K, Chowdhury S, Kamilya D. 2013. Effects of potential probiotic B acillus amyloliquifaciens fptb16 on systemic and cutaneous mucosal immune responses and disease resistance of catla (Catla catla). Fish & Shellfish Immunology, 35 (5): 1 547–1 553.CrossRefGoogle Scholar
  16. Defoirdt T, Halet D, Vervaeren H, Boon N, Van de Wiele T, Sorgeloos P, Bossier P, Verstraete W. 2007. The bacterial storage compound poly-β-hydroxybutyrate protects Artemia franciscana from pathogenic Vibrio campbellii. Environmental Microbiology, 9 (2): 445–452.CrossRefGoogle Scholar
  17. Díaz-Rosales P, Salinas I, Rodríguez A, Cuesta A, Chabrillón M, Balebona M C, Moriñigo M Á, Esteban M Á, Meseguer J. 2006. Gilthead seabream (Sparus aurata L.) innate immune response after dietary administration of heatinactivated potential probiotics. Fish & Shellfish Immunology, 20 (4): 482–492.CrossRefGoogle Scholar
  18. Diaz-Sanchez S, Hanning I, Pendleton S, D’Souza D. 2013. Next-generation sequencing: the future of molecular genetics in poultry production and food safety. Poultry Science, 92 (2): 562–572.CrossRefGoogle Scholar
  19. Edgar R C, Haas B J, Clemente J C, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27 (16): 2 194–2 200.CrossRefGoogle Scholar
  20. Edgar R C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10 (10): 996–998.CrossRefGoogle Scholar
  21. Fan R F. 2010. Screening of potential probiotics derived from intestine of cultured Scophthalmus maximus and preliminary application. Shanghai Ocean University, Shanghai. (in Chinese with English abstract)Google Scholar
  22. Fang H, Wang H F, Cai L, Yu Y L. 2015. Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey. Environmental Science & Technology, 49 (2): 1 095–1 104.CrossRefGoogle Scholar
  23. Ferguson H W, Collins R O, Moore M, Coles M, MacPhee D D. 2004. Pseudomonas anguilliseptica infection in farmed cod, Gadus morhua L. Journal of F ish Diseases, 27 (4): 249–253.CrossRefGoogle Scholar
  24. Garcés M E, Sequeiros C, Olivera N L. 2015. Marine Lactobacillus pentosus H16 protects Artemia franciscana from Vibrio alginolyticus pathogenic effects. Diseases of Aquatic Organisms, 113 (1): 41–50.CrossRefGoogle Scholar
  25. Garnier M, Labreuche Y, Garcia C, Robert M, Nicolas J L. 2007. Evidence for the involvement of pathogenic bacteria in summer mortalities of the Pacific oyster Crassostrea gigas. Microbial Ecology, 53 (2): 187–196.CrossRefGoogle Scholar
  26. Gatesoupe F J. 1990. The continuous feeding of turbot larvae, Scophthalmus maximus, and control of the bacterial environment of rotifers. Aquaculture, 89 (2): 139–148.CrossRefGoogle Scholar
  27. Gatesoupe F J. 1991. Managing the dietary value of Artemia for larval turbot, Scophthalmus maximus; the effect of enrichment and distribution techniques. Aquacultural Engineering, 10 (2): 111–119.CrossRefGoogle Scholar
  28. Gatesoupe F J. 1994. Lactic acid bacteria increase the resistance of turbot larvae, Scophthalmus maximus, against pathogenic Vibrio. Aquatic Living Resources, 7 (4): 277–282.CrossRefGoogle Scholar
  29. Gatesoupe F J. 2002. Probiotic and formaldehyde treatments of Artemia nauplii as food for larval pollack, Pollachius pollachius. Aquaculture, 212 (1–4): 347–360.CrossRefGoogle Scholar
  30. Gatesoupe F J. 2008. Updating the importance of lactic acid bacteria in fish farming: natural occurrence and probiotic treatments. Journal of M olecular M icrobiology and B iotechnology, 14 (1–3): 107–114.Google Scholar
  31. Gianelli J D, Kennedy S B, Fernandez E M, Gensler A L, Tucker J W J. 1997. Increased production of rotifers treated with Bacillus sp. isolated from common snook (Ce n tropom o us undec emalis) larvae. World Aquaculture, 97: 131.Google Scholar
  32. Hjelm M, Bergh Ø, Riaza A, Nielsen J, Melchiorsen J, Jensen S, Duncan H, Ahrens P, Birkbeck H, Gram L. 2004. Selection and identification of autochthonous potential probiotic bacteria from turbot larvae (Scophthalmus maximus) rearing units. Systematic and Applied Microbiology, 27 (3): 360–371.CrossRefGoogle Scholar
  33. Hoshina T, Sano T, Morimoto Y. 1958. A Streptococcus pathogenic to fish. Journal of the Tokyo Univ ersity of Fish eries, 44: 44–57.Google Scholar
  34. Huys G, Bartie K, Cnockaert M, Oanh D T H, Phuong N T, Somsiri T, Chinabut S, Yusoff F M, Shariff M, Giacomini M, Teale A, Swings J. 2007. Biodiversity of chloramphenicol-resistant mesophilic heterotrophs from Southeast Asian aquaculture environments. Research in M icrobiology, 158 (3): 228–235.Google Scholar
  35. Huys L, Dhert P, Robles R, Ollevier F, Sorgeloos P, Swings J. 2001. Search for beneficial bacterial strains for turbot (Scophthalmus maximus L.) larviculture. Aquaculture, 193 (1–2): 25–37.CrossRefGoogle Scholar
  36. Immanuel G, Citarasu T, Sivaram V, Babu M M, Palavesam A. 2007. Delivery of HUFA, probionts and biomedicine through bioencapsulated Artemia as a means to enhance the growth and survival and reduce the pathogenesity in shrimp Penaeus monodon postlarvae. Aquaculture International, 15 (2): 137–152.CrossRefGoogle Scholar
  37. Jamali H, Imani A, Abdollahi D, Roozbehfar R, Isari A. 2015. Use of probiotic Bacillus spp. in rotifer (Brachionus plicatilis) and artemia (Artemia urmiana) enrichment: effects on growth and survival of pacific white shrimp, Litopenaeus vannamei, larvae. Probiotics and Antimicrobial Proteins, 7 (2): 118–125.CrossRefGoogle Scholar
  38. Kim D H, Austin B. 2006. Innate immune responses in rainbow trout (Oncorhynchus mykiss, Walbaum) induced by probiotics. Fish & Shellfish Immunology, 21 (5): 513–524.CrossRefGoogle Scholar
  39. Lamari F, Sadok K, Bakhrouf A, Gatesoupe F J. 2014. Selection of lactic acid bacteria as candidate probiotics and in vivo test on Artemia nauplii. Aquaculture International, 22 (2): 699–709.CrossRefGoogle Scholar
  40. Magi G E, Lopez-Romalde S, Magariños G E, Lamas J, Toranzo A E, Romalde J L. 2009. Experimental Pseudomonas anguilliseptica infection in turbot Psetta maxima (L.): a histopathological and immunohistochemical study. European Journal of Histochemistry, 53 (2): e9.CrossRefGoogle Scholar
  41. Martínez-Díaz S F, Álvarez-González C A, Legorreta M M, Vázquez-Juárez R, Barrios-González J. 2003. Elimination of the associated microbial community and bioencapsulation of bacteria in the rotifer Brachionus plicatilis. Aquaculture International, 11 (1–2): 95–108.CrossRefGoogle Scholar
  42. Munro P D, Barbour A, Birkbeck T H. 1995. Comparison of the growth and survival of larval turbot in the absence of culturable bacteria with those in the presence of Vibrio anguillarum, Vibrio alginolyticus, or a marine Aeromonas sp. Applied and Environmental Microbiology, 61 (12): 4 425–4 428.Google Scholar
  43. Nayak S K. 2010. Probiotics and immunity: a fish perspective. Fish & Shellfish Immunology, 29 (1): 2–14.CrossRefGoogle Scholar
  44. Palma J, Bureau D P, Andrade J P. 2011. Effect of different Artemia enrichments and feeding protocol for rearing juvenile long snout seahorse, Hippocampus guttulatus. Aquaculture, 318 (3–4): 439–443.CrossRefGoogle Scholar
  45. Planas M, Pérez-Lorenzo M, Hjelm M, Gram L, Fiksdal I U, Bergh Ø, Pintado J. 2006. Probiotic effect in vivo of Roseobacter strain 27–4 against Vibrio (Listonella) anguillarum infections in turbot (Scophthalmus maximus L.) larvae. Aquaculture, 255 (1–4): 323–333.CrossRefGoogle Scholar
  46. Ruscoe I M, Williams G R, Shelley C C. 2004. Limiting the use of rotifers to the first zoeal stage in mud crab (Scylla serrata Forskål) larval rearing. Aquaculture, 231 (1–4): 517–527.CrossRefGoogle Scholar
  47. Shi X Q, Zhang Z, Wang Y G, Yu Y X, Deng W, Li H. 2015. The characteristics of culturable bacterial microflora in the gastrointestinal tract of turbot (Scophthatmus maximus) larvae. Progress i n Fishery Sciences, 36 (4): 73–82. (in Chinese with English abstract)Google Scholar
  48. Shiri Harzevili A R, van Duffel H, Dhert P, Swings J, Sorgeloos P. 1998. Use of a potential probiotic Lactococcus lactis AR21 strain for the enhancement of growth in the rotifer Brachionus plicatilis (Müller). Aquaculture Research, 29 (6): 411–417.Google Scholar
  49. Silva E F, Soares M A, Calazans N F, Vogeley J L, do Valle B C, Soares R, Peixoto S. 2012. Effect of probiotic (Bacillus spp.) addition during larvae and postlarvae culture of the white shrimp Litopenaeus vannamei. Aquaculture Research, 44 (1): 13–21.CrossRefGoogle Scholar
  50. Skjermo J, Bakke I, Dahle S W, Vadstein O. 2015. Probiotic strains introduced through live feed and rearing water have low colonizing success in developing Atlantic cod larvae. Aquaculture, 438: 17–23.CrossRefGoogle Scholar
  51. Smith P, Hiney M P, Samuelsen O B. 1994. Bacterial resistance to antimicrobial agents used in fish farming: a critical evaluation of method and meaning. Annual Review of Fish Diseases, 4: 4–273.CrossRefGoogle Scholar
  52. Subasinghe R. 1997. Fish health and quarantine. In: Review of the State of the World Aquaculture—FAO Fisheries Circular no.886. Food and Agriculture Organization of the United Nations, Rome. p.45-49.Google Scholar
  53. Suga K, Tanaka Y, Sakakura Y, Hagiwara A. 2011. Axenic culture of Brachionus plicatilis using antibiotics. Hydrobiologia, 662 (1): 113–119.CrossRefGoogle Scholar
  54. Sulkin S D, Epifanio C E. 1975. Comparison of rotifers and other diets for rearing early larvae of the blue crab, Callinectes sapidus Rathbun. Estuarine and Coastal Marine Science, 3 (1): 109–113.CrossRefGoogle Scholar
  55. Sun Y Z, Yang H L, Huang K P, Ye J D, Zhang C X. 2013. Application of autochthonous Bacillus bioencapsulated in copepod to grouper Epinephelus coioides larvae. Aquaculture, 392-395: 44–50.CrossRefGoogle Scholar
  56. Verschuere L, Heang H, Criel G, Dafnis S, Sorgeloos P, Verstraete W. 2000a. Selected bacterial strains protect Artemia spp. from the Pathogenic Effects of Vibrio proteolyticus CW8T2. Appl ied and Environ mental Microbiol ogy, 66 (3): 1 139–1 146.CrossRefGoogle Scholar
  57. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. 2000b. Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews, 64 (4): 655–671.CrossRefGoogle Scholar
  58. Villamil L, Figueras A, Planas M, Novoa B. 2003. Control of Vibrio alginolyticus in Artemia culture by treatment with bacterial probiotics. Aquaculture, 219 (1–4): 43–56.CrossRefGoogle Scholar
  59. Wang S X, Yang Z X, Sun Z, Liu Y, Wang C W, Jing Y H. 2014. Application of high throughput sequencing in the diversity of water microbial communities. Chemistry, 77 (3): 196–203. (in Chinese with English abstract)Google Scholar
  60. Wu Z Q, Jiang C, Ling F, Wang G X. 2015. Effects of dietary supplementation of intestinal autochthonous bacteria on the innate immunity and disease resistance of grass carp (Ctenopharyngodon idellus). Aquaculture, 438: 105–114.CrossRefGoogle Scholar
  61. Zhang Z, Liao M J, Li B, Wang Y G, Wang L, Rong X J, Chen G P. 2014. Study on cultured half-smooth tongue sole (Cynoglossus semilaevis Günther) intestinal microflora changes affected by different disease occurrence. Journal of Fisheries of China, 38 (9): 1 565–1 572. (in Chinese with English abstract)Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yan Jiang (姜燕)
    • 1
  • Zheng Zhang (张正)
    • 1
  • Yingeng Wang (王印庚)
    • 1
  • Yayun Jing (景亚运)
    • 1
  • Meijie Liao (廖梅杰)
    • 1
  • Xiaojun Rong (荣小军)
    • 1
  • Bin Li (李彬)
    • 1
  • Guiping Chen (陈贵平)
    • 1
  • Hesen Zhang (张和森)
    • 2
  1. 1.Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production ProcessesQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  2. 2.Qingdao General Aquatic Co. Ltd.QingdaoChina

Personalised recommendations