Advertisement

Journal of Oceanology and Limnology

, Volume 36, Issue 4, pp 1383–1391 | Cite as

Histo-blood group antigens in Crassostrea gigas and binding profiles with GII.4 Norovirus

  • Liping Ma (马丽萍)
  • Hui Liu (刘慧)
  • Laijin Su (苏来金)
  • Feng Zhao (赵峰)
  • Deqing Zhou (周德庆)
  • Delin Duan (段德麟)
Biology

Abstract

Noroviruses (NoVs) are the main cause of viral gastroenteritis outbreaks worldwide, and oysters are the most common carriers of NoV contamination and transmission. NoVs bind specifically to oyster tissues through histo-blood group antigens (HBGAs), and this facilitates virus accumulation and increases virus persistence in oysters. To investigate the interaction of HBGAs in Pacific oysters with GII.4 NoV, we examined HBGAs with ELISAs and investigated binding patterns with oligosaccharide-binding assays using P particles as a model of five GII.4 NoV capsids. The HBGAs in the gut and gills exhibited polymorphisms. In the gut, type A was detected (100%), whereas type Leb (91.67%) and type A (61.11%) were both observed in the gills. Moreover, we found that seasonal NoV gastroenteritis outbreaks were not significantly associated with the specific HBGAs detected in the oyster gut and gills. In the gut, we found that strain-2006b and strain-96/96US bound to type A and H1 but only weakly bound to type Leb; in contrast, the Camberwell and Hunter strains exhibited weak binding to types H1 and Ley, and strain-Sakai exhibited no binding to any HBGA type. In the gills, strain-96/96US and strain-2006b bound to type Leb but only weakly bound to type H1; strains Camberwell, Hunter, and Sakai did not bind to oyster HBGAs. Assays for oligosaccharide binding to GII.4 NoV P particles showed that strain-95/96US and strain-2006b strongly bound to type A, B, H1, Leb, and Ley oligosaccharides, while strains Camberwell and Hunter showed weak binding ability to type H1 and Ley oligosaccharides and strain-Sakai showed weak binding ability to type Leb and Ley oligosaccharides. Our study presents new information and enhances understanding about the mechanism for NoV accumulation in oysters. Further studies of multiple NoV-tissue interactions might assist in identifying new or improved strategies for minimizing contamination, including HBGA-based attachment inhibition or depuration.

Keyword

Crassostrea gigas norovirus histo-blood group antigen binding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

We thank Dr. JIN Miao at the CDC, China, for providing the GII.4 norovirus variants and antisera, Dr. Ian R. Jenkinson for performing English revision. We also thank Katie Oakley, PhD, from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

References

  1. Anbazhagi S, Kamatchiammal S. 2010. A comparative study for the efficient detection of norovirus from drinking water by RT-PCR and real-time PCR. Water Air Soil Poll., 213 (1–4): 71–84.CrossRefGoogle Scholar
  2. Chung H, Sobsey M D. 1993. Comparative survival of indicator viruses and enteric viruses in seawater and sediment. Water Sci. Technol., 27 (3–4): 425–428.CrossRefGoogle Scholar
  3. DePaola A, Jones J L, Woods J, Burkhardt III W, Calci K R, Krantz J A, Bowers J C, Kasturi K, Byars R H, Jacobs E, Williams-Hill D, Nabe K. 2010. Bacterial and viral pathogens in live oysters: 200. United States market survey. Appl. Environ. Microb iol., 76 (9): 2 754–2 768.CrossRefGoogle Scholar
  4. Fankhauser R L, Monroe S S, Noel J S, Humphrey C D, Bresee J S, Parashar U D, Ando T, Glass R I. 2002. Epidemiologic and molecular trends of “Norwalk-like viruses” associated with outbreaks of gastroenteritis in the United States. J. Infect. Dis., 186 (1): 1–7.CrossRefGoogle Scholar
  5. Huang P W, Farkas T, Zhong W M, Tan M, Thornton S, Morrow A L, Jiang X. 2005. Norovirus and histo-blood group antigens: demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. J. Virol., 79 (11): 6 714–6 722.CrossRefGoogle Scholar
  6. Le Guyader F S, Loisy F, Atmar R L, Hutson A M, Estes M K, Ruvoën-Clouet N, Pommepuy M, Le Pendu J. 2006. Norwalk virus-specific binding to oyster digestive tissues. Emerg. Infect. Dis., 12 (6): 931–936.CrossRefGoogle Scholar
  7. Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, Lindblad L, Stewart P, LePendu J, Baric R. 2003. Human susceptibility and resistance to Norwalk virus infection. Nat. Med., 9 (5): 548–553.CrossRefGoogle Scholar
  8. Lipp E K, Kurz R, Vincent R, Rodriguez-Palacios C, Farrah S R, Rose J B. 2001. The effects of seasonal variability and weather on microbial fecal pollution and enteric pathogens in a subtropical estuary. Estuaries, 24 (2): 266–276.CrossRefGoogle Scholar
  9. Love D C, Lovelace G L, Sobsey M D. 2010. Removal of Escherichia coli, Enterococcus fecalis, coliphage MS2, poliovirus, and hepatitis A virus from oysters (Crassostrea virginica) and hard shell clams (Mercinaria mercinaria) by depuration. Int. J. Food Microbiol., 143 (3): 211–217.CrossRefGoogle Scholar
  10. Lowther J A, Gustar N E, Hartnell R E, Lees D N. 2012. Comparison of norovirus RNA levels in outbreak-related oysters with background environmental levels. J. Food Protect., 75 (2): 389–393.CrossRefGoogle Scholar
  11. Ma L P, Su L J, Zhao F, Zhou D Q. 2015. Type-like of HBGAs in Crassostrea gigas and its binding properties with norovirus P particles. J. Food Saf. Qual., 6 (10): 3 970–3 975. (in Chinese with English abstract)Google Scholar
  12. Ma L P, Zhao F, Yao L, Li X G, Zhou D Q, Zhang R L. 2013. The presence of genogroup IInorovirus in retail shellfish from seven coastal cities in China. Food Environ. Virol., 5 (2): 81–86.CrossRefGoogle Scholar
  13. Maalouf H, Schaeffer J, Parnaudeau S, Le Pendu J, Atmar R L, Crawford S E, Le Guyader F S. 2011. Strain-dependent norovirus bioaccumulation in oysters. Appl. Environ. Microbiol., 77 (10): 3 189–3 196.CrossRefGoogle Scholar
  14. Maalouf H, Zakhour M, Le Pendu J, Le Saux J C, Atmar R L, Le Guyader F S. 2010. Distribution in tissue and seasonal variation of norovirus genogroup I and II ligands in oysters. Appl. Environ. Microbiol., 76 (16): 5 621–5 630.CrossRefGoogle Scholar
  15. Myrmel M, Berg E M M, Rimstad E, Grinde B. 2004. Detection of enteric viruses in shellfish from the Norwegian coast. Appl. Environ. Microbiol., 70 (5): 2 678–2 684.CrossRefGoogle Scholar
  16. Nishida T, Nishio O, Kato M, Chuma T, Kato H, Iwata H, Kimura H. 2007. Genotyping and quantitation of noroviruses in oysters from two distinct sea areas in Japan. Microbiol. Immunol., 51 (2): 177–184.CrossRefGoogle Scholar
  17. Prasad B V V, Hardy M E, Dokland T, Bella J, Rossmann M G, Estes M K. 1999. X-ray crystallographic structure of the Norwalk virus capsid. Science, 286 (5438): 287–290.CrossRefGoogle Scholar
  18. Provost K, Dancho B A, Ozbay G, Anderson R S, Richards G P, Kingsley D H. 2011. Hemocytes are sites of enteric virus persistence within oysters. Appl. Environ. Microbiol., 77 (23): 8 360–8 369.CrossRefGoogle Scholar
  19. Rodriguez-Manzano J, Hundesa A, Calgua B, Carratala A, de Motes C M, Rusiñol M, Moresco V, Ramos A P, Martínez-Marca F, Calvo M, Barardi C R M, Girones R, Bofill-Mas S. 2014. Adenovirus and norovirus contaminants in commercially distributed shellfish. Food Environ. Virol., 6 (1): 31–41.CrossRefGoogle Scholar
  20. Savini G, Casaccia C, Barile N B, Paoletti M, Pinoni C. 2009. Norovirus in bivalve molluscs: A study of the efficacy of the depuration system. Vet. Ital., 45 (4): 535–539.Google Scholar
  21. Schaeffer J, Le Saux J C, Lora M, Atmar R L, Le Guyader F S. 2013. Norovirus contamination on French marketed oysters. Int. J. Food Microbiol., 166 (2): 244–248.CrossRefGoogle Scholar
  22. Siebenga J J, Vennema H, Zheng D P, Vinjé J, Lee B E, Pang X L, Ho E C M, Lim W, Choudekar A, Broor S, Halperin T, Rasool N B G, Hewitt J, Greening G E, Jin M, Duan Z J, Lucero Y, O’Ryan, M, Hoehne M, Schreier E, RatcliffR M, White R A, Iritani N, Reuter G, Koopmans M. 2009. Norovirus illness is a global problem: emergence and spread of norovirus GII.4 variants, 2001–2007. J. Infect. Dis., 200 (5): 802–812.CrossRefGoogle Scholar
  23. Sinton L W, Davies-Colley R J, Bell R G. 1994. Inactivation of enterococci and fecal coliforms from sewage and meatworks effluents in seawater chambers. Appl. Environ. Microbiol., 60 (6): 2 040–2 048.Google Scholar
  24. Tan M, Jiang X. 2005a. Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle. Trends Microbiol., 13 (6): 285–293.CrossRefGoogle Scholar
  25. Tan M, Jiang X. 2005b. The P domain of norovirus capsid protein forms a subviral particle that binds to histo-blood group antigen receptors. J. Virol., 79 (22): 14 017–14 030.CrossRefGoogle Scholar
  26. Tan M, Jiang X. 2007. Norovirus-host interaction: implications for disease control and prevention. Expert Rev. Mol. Med., 9 (19): 1–22.CrossRefGoogle Scholar
  27. Tan M, Zhong W M, Song D, Thornton S, Jiang X. 2004. E. coli-expressed recombinant norovirus capsid proteins maintain authentic antigenicity and receptor binding capability. J. Med. Virol., 74 (4): 641–649.CrossRefGoogle Scholar
  28. Tian P, Bates A H, Jensen H M, Mandrell R E. 2006. Norovirus binds to blood group A-like antigens in oyster gastrointestinal cells. Lett. Appl. Microbi ol., 43 (6): 645–651.CrossRefGoogle Scholar
  29. Tian P, Engelbrektson A L, Mandrell R E. 2008. Seasonal tracking of histo-blood group antigen expression and norovirus binding in oyster gastrointestinal cells. J. Food. Prot., 71 (8): 1 696–1 700.CrossRefGoogle Scholar
  30. Wang D P, Wu Q P, Kou X X, Yao L, Zhang J M. 2008. Distribution of norovirus in oyster tissues. J. Appl. Microbiol., 105 (6): 1 966–1 972.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Liping Ma (马丽萍)
    • 1
    • 2
    • 3
  • Hui Liu (刘慧)
    • 2
  • Laijin Su (苏来金)
    • 2
  • Feng Zhao (赵峰)
    • 2
  • Deqing Zhou (周德庆)
    • 2
  • Delin Duan (段德麟)
    • 1
    • 3
  1. 1.Key Laboratory of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
  3. 3.Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations