Advertisement

Journal of Oceanology and Limnology

, Volume 36, Issue 3, pp 933–941 | Cite as

Comparative study of responses in the brown algae Sargassum thunbergii to zinc and cadmium stress

  • Fang Lü (吕芳)
  • Gang Dind (丁刚)
  • Wei Liu (刘玮)
  • Dongmei Zhan (詹冬梅)
  • Haiyi Wu (吴海一)
  • Wen Guo (郭文)
Article

Abstract

Heavy metal pollution in aquatic system is becoming a serious problem worldwide. In this study, responses of Sargassum thunbergii to different concentrations (0, 0.1, 0.5, 1.0 and 5.0 mg/L) of zinc (Zn) and cadmium (Cd) exposure separately were studied for 15 days in laboratory-controlled conditions. The results show that the specific growth rates increased slightly under the lower Zn concentration treatment (0.1 mg/L) at the first 5 d and then decreased gradually, which were significantly reduced with the exposure time in higher Zn concentrations and all Cd treatments compared to respective control, especially for 1.0 and 5.0 mg/L Cd. Chlorophyll a contents showed significant increase in 0.1 mg/L Zn treatment, whereas the gradually reduction were observed in the other three Zn treatments and all Cd treatments. The oxygen evolution rate and respiration rate presented distinct behavior in the Zn-treated samples, but both declined steadily with the exposure time in Cd treatments. The P/R value analyses showed similar variation patterns as chlorophyll a contents. Real-time PCR showed that lower Zn concentration (0.1 mg/L) increased mRNA expression of rbcL gene, whereas higher Zn concentrations and Cd reduced the rbcL expression. Taken together, these findings strongly indicate that Zn and Cd had different effects on S. thunbergii both at the physiological and gene transcription levels, the transcript level of photosynthesis-related gene rbcL can be used as an useful molecular marker of algal growth and environment impacts.

Keyword

Sargassum thunbergii heavy metal stress chlorophyll photosynthesis rate respiration rate rbcL gene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberte R S, Thornber J P, Fiscus E L. 1977. Water stress effects on the content and organization of chlorophyll in mesophyll and bundle sheath chloroplasts of maize. Plant Physiology, 59 (3): 351–353.CrossRefGoogle Scholar
  2. Amado Filho G M, Karez C S, Andrade L R, Yoneshigue-Valentin Y, Pfeiffer W C. 1997. Effects on growth and accumulation of zinc in six seaweed species. Ecotoxicology and Environmental Safety, 37 (3): 223–228.CrossRefGoogle Scholar
  3. Asaolu S S, Olaofe O. 2005. Biomagnification of some heavy and essential metals in sediments, fishes and crayfish from Ondo State coastal region, Nigeria. Pakistan Journal of Scientific and Industrial Research, 48 (2): 96–102.Google Scholar
  4. Costa G B, de Felix M R L, Simioni C, Ramlov F, Oliveira E R, Pereira D T, Maraschin M, Chow F, Horta P A, Lalau C M, da Costa C H, Matias W G, Bouzon Z L, Schmidt É C. 2016a. Effects of copper and lead exposure on the ecophysiology of the brown seaweed Sargassum cymosum. Protoplasma, 253 (1): 111–125.CrossRefGoogle Scholar
  5. Costa G B, Simioni C, Pereira D T, Ramlov F, Maraschin M, Chow F, Horta P A, Bouzon Z L, Schmidt É C. 2016b. The brown seaweed Sargassum cymosum: changes in metabolism and cellular organization after long-term exposure to cadmium. Protoplasma, 254 (2): 817–837.CrossRefGoogle Scholar
  6. Costa G B, Simioni C, Ramlov F, Maraschin M, Chow F, Bouzon Z L, Schmidt É C. 2017. Effects of manganese on the physiology and ultrastructure of Sargassum cymosum. Environmental and Experimental Botany, 133: 24–34.CrossRefGoogle Scholar
  7. dos Santos R W, Schmidt É C, Martins R D P, Latini A, Maraschin M, Horta P A, Bouzon Z L. 2012. Effects of cadmium on growth, photosynthetic pigments, photosynthetic performance, biochemical parameters and structure of chloroplasts in the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales). American Journal of Plant Sciences, 3 (8): 1 077–1 084.CrossRefGoogle Scholar
  8. Ferreira I D, do Rosário V E, Cravo P V L. 2006. Real-time quantitative PCR with SYBR Green I detection for estimating copy numbers of nine drug resistance candidate genes in Plasmodium falciparum. Malaria Journal, 5 (1): 1.CrossRefGoogle Scholar
  9. Gouveia C, Kreusch M, Schmidt É C, de Felix M R, Osorio L K P, Pereira D T, dos Santos R, Ouriques L C, de Paula Martins R, Latini A, Ramlov F, Carvalho T J G, Chow F, Maraschin M, Bouzon Z L. 2013. The effects of lead and copper on the cellular architecture and metabolism of the red alga Gracilaria domingensis. Microscopy and Microanalysis, 19 (3): 513–524.CrossRefGoogle Scholar
  10. Hall J L. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53 (366): 1–11.CrossRefGoogle Scholar
  11. Humphrey G F. 1975. The photosynthesis: respiration ratio of some unicellular marine algae. Journal of Experimental Marine Biology and Ecology, 18 (2): 111–119.CrossRefGoogle Scholar
  12. Jeffrey S W, Humphrey G F. 1975. New spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167 (2): 191–194.CrossRefGoogle Scholar
  13. Jothinayagi N, Anbazhagan C. 2009. Heavy metal monitoring of Rameswaram coast by some Sargassum species. American-Eurasian Journal of Scientific Research, 4 (2): 73–80.Google Scholar
  14. Lignell Å, Pedersén M. 1989. Agar composition as a function of morphology and growth rate studies on some morphological strains of Gracilaria secundata and Gracilaria verrucosa (Rhodophyta). Botanica Marina, 32 (3): 219–227.CrossRefGoogle Scholar
  15. Mamboya F A, Pratap H B, Mtolera M, Björk M. 1999. The effect of copper on the daily growth rate and photosynthetic efficiency of the brown macroalga Padina boergesenii. In: Richmond M D, Francis J eds. Proceedings of the Conference on Advances on Marine Sciences in Tanzania. p.185-192.Google Scholar
  16. McAllister C D, Shah N, Strickland J D H. 1964. Marine phytoplankton photosynthesis as a function of light intensity: a comparison of methods. Journal of the Fisheries Research Board of Canada, 21 (1): 159–181.CrossRefGoogle Scholar
  17. Melis A, Melnicki M R. 2006. Integrated biological hydrogen production. International Journal of Hydrogen Energy, 31 (11): 1 563–1 573.CrossRefGoogle Scholar
  18. Olowu R A, Ayejuyo O O, Adewuyi G O, Adejoro I A, Denloye A A B, Babatunde A O, Ogundajo A L. 2010. Determination of heavy metals in fish tissues, water and sediment from Epe and Badagry Lagoons, Lagos, Nigeria. E-Journal of Chemistry, 7 (1): 215–221.CrossRefGoogle Scholar
  19. Patrón-Prado M, Casas-Valdez M, Serviere-Zaragoza E, Zenteno-Savín T, Lluch-Cota D B, Méndez-Rodríguez L. 2011. Biosorption capacity for cadmium of brown seaweed Sargassum sinicola and Sargassum lapazeanum in the Gulf of California. Water, Air, & Soil Pollution, 221: 137–144.CrossRefGoogle Scholar
  20. Pichard S L, Frischer M E, Paul J H. 1993. Ribulose bisphosphate carboxylase gene expression in subtropical marine phytoplankton populations. Marine Ecology Progress Series, 101: 55–65.CrossRefGoogle Scholar
  21. Ryther J H. 1955. The ratio of photosynthesis to respiration in marine plankton algae and its effect upon the measurement of productivity. Deep Sea Research, 2 (2): 134–139.CrossRefGoogle Scholar
  22. Saleh B. 2015. Physiological response of the green algae Ulva lactuca (chlorophyta) to heavy metals stress. Journal of Stress Physiology & Biochemistry, 11 (3): 38–51.Google Scholar
  23. Santos R W, Schmidt É C, Vieira I C, Costa G B, Rover T, Simioni C, Barufi J B, Soares C H L, Bouzon Z L. 2015. The effect of different concentrations of copper and lead on the morphology and physiology of Hypnea musciformis cultivated in vitro: a comparative analysis. Protoplasma, 252 (5): 1 203–1 215.CrossRefGoogle Scholar
  24. Shao Z R, Liu F L, Li Q Y, Yao J T, Duan D L. 2014. Characterization of ribulose-1,5-bisphosphate carboxylase/oxygenase and transcriptional analysis of its related genes in Saccharina japonica (Laminariales, Phaeophyta). Chinese Journal of Oceanology and Limnology, 32 (2): 377–389.CrossRefGoogle Scholar
  25. Stobart A K, Griffiths W T, Ameen-Bukhari I, Sherwood R P. 1985. The effect of Cd 2+ on the biosynthesis of chlorophyll in leaves of barley. Physiologia Plantarum, 63 (3): 293–298.CrossRefGoogle Scholar
  26. Volesky B, Holan Z R. 1995. Biosorption of heavy metals. Biotechnology Progress, 11 (3): 235–250.CrossRefGoogle Scholar
  27. Wu H Y, Zhan D M, Liu H J, Ding G, Liu W, Li M Z. 2010. Study on accumulation and degradation of heavy metals by the Brown alga Sargassum thunbergii. Marine Sciences, 34 (1): 69–74. (in Chinese with English abstract)Google Scholar
  28. Xia J R, Li Y J, Lu J, Chen B. 2004. Effects of copper and cadmium on growth, photosynthesis, and pigment content in Gracilaria lemaneiformis. Bulletin of Environmental Contamination and Toxicology, 73 (6): 979–986.CrossRefGoogle Scholar
  29. Xu J F, Fan X, Zhang X W, Xu D, Mou S L, Cao S N, Zheng Z, Miao J L, Ye N H. 2012. Evidence of coexistence of C 3 and C 4 photosynthetic pathways in a green-tide-forming alga, Ulva prolifera. PLoS One, 7 (5): e37438.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fang Lü (吕芳)
    • 1
    • 2
  • Gang Dind (丁刚)
    • 1
    • 2
  • Wei Liu (刘玮)
    • 1
    • 2
  • Dongmei Zhan (詹冬梅)
    • 1
    • 2
  • Haiyi Wu (吴海一)
    • 1
    • 2
  • Wen Guo (郭文)
    • 1
  1. 1.Marine Biology Institute of Shandong ProvinceQingdaoChina
  2. 2.Qingdao Macroalgae Engineering Technology Research CenterQingdaoChina

Personalised recommendations