Advertisement

Journal of Oceanology and Limnology

, Volume 36, Issue 3, pp 892–904 | Cite as

Molecular cloning and transcriptional analysis of a NPY receptor-like in common Chinese cuttlefish Sepiella japonica

  • Jingwen Yang (杨静文)
  • Yuchao Xu (徐玉超)
  • Ke Xu (许珂)
  • Hongling Ping (平洪领)
  • Huilai Shi (史会来)
  • Zhenming Lü (吕振明)
  • Changwen Wu (吴常文)
  • Tianming Wang (王天明)
Article
  • 18 Downloads

Abstract

Neuropeptide Y (NPY) has a pivotal role in the regulation of many physiological processes. In this study, the gene encoding a NPY receptor-like from the common Chinese cuttlefish Sepiella japonica (SjNPYR-like) was identified and characterized. The full-length SjNPYR-like cDNA was cloned containing a 492-bp of 5′ untranslated region (UTR), 1 182 bp open reading frame (ORF) encoding a protein of 393 amino acid residues, and 228 bp of 3′ UTR. The putative protein was predicted to have a molecular weight of 45.54 kDa and an isoelectric point (pI) of 8.13. By informatic analyses, SjNPYR-like was identified as belonging to the class A G protein coupled receptor (GPCR) family (the rhodopsin-type). The amino acid sequence contained 12 potential phosphorylation sites and five predicted N-linked glycosylation sites. Multiple sequence alignment and 3D structure modeling were conducted to clarify SjNPYR bioinformatics characteristics. Phylogenetic analysis identifies it as an NPYR with identity of 33% to Lymnaea stagnalis NPFR. Transmembrane properties of SjNPYR-like were demonstrated in vitro using HEK293 cells and the pEGFP-N1 plasmid. Relative quantification of SjNPYR-like mRNA level confirmed a high level expression and broad distribution of SjNPYR-like in various tissues of female S. japonica. In addition, the transcriptional profile of SjNPYR-like in the brain, liver, and ovary during gonadal development was analyzed. The results provide basic understanding on the molecular characteristics of SjNPYR-like and its potentially physical functions.

Keyword

Sepiella japonica NPY receptor-like growth reproduction gene expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

343_2018_6270_MOESM1_ESM.pdf (210 kb)
Supplementary material, approximately 212 KB.

References

  1. Albertin C B, Simakov O, Mitros T, Wang Z Y, Pungor J R, Edsinger-Gonzales E, Brenner S, Ragsdale C W, Rokhsar D S. 2015. The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature, 524 (7564): 220–224, https://doi.org/10.1038/nature14668.CrossRefGoogle Scholar
  2. Arnold J N, Wormald M R, Sim R B, Rudd P M, Dwek R A. 2007. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annual Review of Immunology, 25 (1): 21–50, https://doi.org/10.1146/annurev.immunol.25.022106.141702.CrossRefGoogle Scholar
  3. Beck B. 2001. KO’s and organisation of peptidergic feeding behavior mechanisms. Neuroscience & Biobehavioral Reviews, 25 (2): 143–158, https://doi.org/10.1016/S0149-7634(01)00003-3.CrossRefGoogle Scholar
  4. Blumenthal S. 2010. From insulin and insulin-like activity to the insulin superfamily of growth-promoting peptides: a 20th-century odyssey. Perspectives in Biology and Medicine, 53 (4): 491–508, https://doi.org/10.1353/pbm.2010.0001.CrossRefGoogle Scholar
  5. Cao Z H, Sun L L, Chi C F, Liu H H, Zhou L Q, Lv Z M, Wu C W. 2016. Molecular cloning, expression analysis and cellular localization of an LFRFamide gene in the cuttlefish Sepiella japonica. Peptides, 80: 40–47. https://doi.org/10.1016/j.peptides.2015.10.005.CrossRefGoogle Scholar
  6. de Jong-Brink M, ter Maat A, Tensen C P. 2001. NPY in invertebrates: molecular answers to altered functions during evolution. Peptides, 22 (3): 309–315, https://doi.org/10.1016/S0196-9781(01)00332-1.CrossRefGoogle Scholar
  7. Deng X Y, Yang H P, He X B, Liao Y, Zheng C X, Zhou Q, Zhu C G, Zhang G Z, Gao J M, Zhou N M. 2014. Activation of Bombyx neuropeptide G protein-coupled receptor A4 via a Gαi-dependent signaling pathway by direct interaction with neuropeptide F from silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology, 45: 45–77. https://doi.org/10.1016/j.ibmb.2013.12.007.CrossRefGoogle Scholar
  8. Di Cristo C. 2013. Nervous control of reproduction in Octopus vulgaris: a new model. Invertebrate Neuroscience, 13 (1): 27–34, https://doi.org/10.1007/s10158-013-0149-x.CrossRefGoogle Scholar
  9. Duvernay M T, Zhou F G, Wu G Y. 2004. A conserved motif for the transport of G protein-coupled receptors from the endoplasmic reticulum to the cell surface. Journal of Biological Chemistry, 279 (29): 30 741–30 750, https://doi.org/10.1074/jbc.M313881200.CrossRefGoogle Scholar
  10. Frankish H M, Dryden S, Hopkins D, Wang Q, Williams G. 1995. Neuropeptide Y, the hypothalamus, and diabetes: insights into the central control of metabolism. Peptides, 16 (4): 757–771, https://doi.org/10.1016/0196-9781(94)00200-P.CrossRefGoogle Scholar
  11. Furuya H. 2008. A new dicyemid from Sepiella japonica (Mollusca: Cephalopoda: Decapoda). Journal of Parasitology, 94 (1): 223–229, https://doi.org/10.1645/GE-1173.1.CrossRefGoogle Scholar
  12. Garczynski S F, Brown M R, Shen P, Murray T F, Crim J W. 2002. Characterization of a functional neuropeptide F receptor from Drosophila melanogaster. Peptides, 23 (4): 773–780, https://doi.org/10.1016/S0196-9781(01)00647-7.CrossRefGoogle Scholar
  13. Garczynski S F, Crim J W, Brown M R. 2005. Characterization of neuropeptide F and its receptor from the African malaria mosquito, Anopheles gambiae. Peptides, 26 (1): 99–107, https://doi.org/10.1016/j.peptides.2004.07.014.CrossRefGoogle Scholar
  14. Gerald C, Walker M W, Criscione L, Gustafson E L, Batzl-Hartmann C, Smith K E, Vaysse P, Durkin M M, Laz T M, Linemeyer D L, Schaffhauser A O, Whitebread S, Hofbauer K G, Taber R I, Branchek T A, Weinshank R L. 1996. A receptor subtype involved in neuropeptide-Yinduced food intake. Nature, 382 (6587): 168–171, https://doi.org/10.1038/382168a0.CrossRefGoogle Scholar
  15. Grimmelikhuijzen C J P, Hauser F. 2012. Mini-review: the evolution of neuropeptide signaling. Regulatory Peptides, 177 (S): S6-S9, https://doi.org/10.1016/j.regpep.2012.05.001.Google Scholar
  16. Hausman G J, Barb C R, Dean R G. 2008. Patterns of gene expression in pig adipose tissue: insulin-like growth factor system proteins, neuropeptide Y (NPY), NPY receptorss of gene expression in pig adipose tissue: insulin-like growth factor system proteins, neuropeptide Y (NPY), NPY receptors, neurotrophic factors and other secreted factors. Domestic Animal Endocrinology, 35 (1): 24–34, https://doi.org/10.1016/j.domaniend.2008.01.004.CrossRefGoogle Scholar
  17. He J Y, Chi C F, Liu H H. 2014. Identification and analysis of an intracellular Cu/Zn superoxide dismutase from Sepiella maindroni under stress of Vibrio harveyi and Cd 2+. Developmental & Comparative Immunology, 47 (1): 1–5, https://doi.org/10.1016/j.dci.2014.06.010.CrossRefGoogle Scholar
  18. Hökfelt T, Stanic D, Sanford S D, Gatlin J C, Nilsson I, Paratcha G, Ledda F, Fetissov S, Lindfors C, Herzog H, Johansen J E, Ubink R, Pfenninger K H. 2008. NPY and its involvement in axon guidance, neurogenesis, and feeding. Nutrition, 24 (9): 860–868, https://doi.org/10.1016/j.nut.2008.06.010.CrossRefGoogle Scholar
  19. Kristiansen K. 2004. Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacology & Therapeutics, 103 (1): 21–80, https://doi.org/10.1016/j.pharmthera.2004.05.002.CrossRefGoogle Scholar
  20. Larhammar D, Salaneck E. 2004. Molecular evolution of NPY receptor subtypes. Neuropeptides, 38 (4): 141–151, https://doi.org/10.1016/j.npep.2004.06.002.CrossRefGoogle Scholar
  21. Leung P S, Shaw C, Maule A G, Thim L, Johnston C F, Irvine G B. 1992. The primary structure of neuropeptide F (NPF) from the garden snail, Helix aspersa. Regulatory Peptides, 41 (1): 71–81, https://doi.org/10.1016/0167-0115(92)90515-V.CrossRefGoogle Scholar
  22. Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ C T method. Methods, 25 (4): 402–408, https://doi.org/10.1006/meth.2001.1262.CrossRefGoogle Scholar
  23. Lü Z M, Liu W, Liu L Q, Shi H L, Ping H L, Wang T M, Chi C F, Wu C W, Chen C H, Shen K N, Hsiao C D. 2016b. De novo assembly and comparison of the ovarian transcriptomes of the common Chinese cuttlefish (Sepiella japonica) with different gonadal development. Genomics Data, 7: 7–155. https://doi.org/10.1016/j.gdata.2015.12.011.CrossRefGoogle Scholar
  24. Lü Z M, Liu W, Liu L Q, Wang T M, Shi H L, Ping H L, Chi C F, Yang J W, Wu C W. 2016a. Cloning, characterization, and expression profile of estrogen receptor in common chinese cuttlefish, Sepiella japonica. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 325 (3): 181–193, https://doi.org/10.1002/jez.2011.CrossRefGoogle Scholar
  25. Marchler-Bauer A, Derbyshire M K, Gonzales N R, Lu S N, Chitsaz F, Geer L Y, Geer R C, He J N, Gwadz M, Hurwitz D I, Lanczycki C J, Lu F, Marchler G H, Song J S, Thanki N, Wang Z X, Yamashita R A, Zhang D C, Zheng C J, Bryant S H. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Research, 43 (D1): D222–D226, https://doi.org/10.1093/nar/gku1221.CrossRefGoogle Scholar
  26. Merten N, Lindner D, Rabe N, Römpler H, Mörl K, Schöneberg T, Beck-Sickinger A G. 2007. Receptor subtype-specific docking of Asp 6.59 with C-terminal arginine residues in Y receptor ligands. Journal of Biological Chemistry, 282 (10): 7 543–7 551, https://doi.org/10.1074/jbc.M608902200.CrossRefGoogle Scholar
  27. Michel M C, Beck-Sickinger A, Cox H, Doods H N, Herzog H, Larhammar D, Quirion R, Schwartz T, Westfall T. 1998. XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacological Reviews, 50 (1): 143–150.Google Scholar
  28. Miedlich S U, Abou-Samra A B. 2008. Eliminating phosphorylation sites of the parathyroid hormone receptor type 1 differentially affects stimulation of phospholipase C and receptor internalization. Endocrinology and Metabolism, 295 (3): e665-E671, https://doi.org/10.1152/ajpendo.00036.2008.Google Scholar
  29. Minakata H. 2010. Oxytocin/vasopressin and gonadotropinreleasing hormone from cephalopods to vertebrates. Annals of the New York Academy of Sciences, 1200 (1): 33–42, https://doi.org/10.1111/j.1749-6632.2010.05569.x.CrossRefGoogle Scholar
  30. Nässel D R, Wegener C. 2011. A comparative review of short and long neuropeptide F signaling in invertebrates: any similarities to vertebrate neuropeptide Y signaling? Peptides, 32 (6): 1 335–1 355, https://doi.org/10.1016/j.peptides.2011.03.013.CrossRefGoogle Scholar
  31. Nguyen A D, Herzog H, Sainsbury A. 2011. Neuropeptide Y and peptide YY: important regulators of energy metabolism. Current Opinion in Endocrinology, Diabetes and Obesity, 18 (1): 56–60, https://doi.org/10.1097/MED.0b013e3283422f0a.CrossRefGoogle Scholar
  32. Pezeshki A, Muench G P, Chelikani P K. 2012. Shortcommunication: expression of peptide YY, proglucagon, neuropeptide Y receptor Y2, and glucagon-like peptide-1 receptor in bovine peripheral tissues. Journal of Dairy Science, 95 (9): 5 089–5 094, https://doi.org/10.3168/jds.2011-5311.CrossRefGoogle Scholar
  33. Rajpara S M, Garcia P D, Roberts R, Eliassen J C, Owens D F, Maltby D, Myers R M, Mayeri E. 1992. Identification and molecular cloning of a neuropeptide Y homolog that produces prolonged inhibition in aplysia neurons. Neuron, 9 (3): 505–513, https://doi.org/10.1016/0896-6273(92)90188-J.CrossRefGoogle Scholar
  34. Redrobe J P, Dumont Y, St-Pierre J A, Quirion R. 1999. Multiple receptors for neuropeptide Y in the hippocampus: putative roles in seizures and cognition. Brain Research, 848 (1–2): 153–166, https://doi.org/10.1016/S0006-8993(99)02119-8.CrossRefGoogle Scholar
  35. Shi Y C, Baldock P A. 2012. Central and peripheral mechanisms of the NPY system in the regulation of bone and adipose tissue. Bone, 50 (2): 430–436, https://doi.org/10.1016/j.bone.2011.10.001.CrossRefGoogle Scholar
  36. Silva A P, Xapelli S, Grouzmann E, Cavadas C. 2005. The putative neuroprotective role of neuropeptide Y in the central nervous system. Current Drug Targets: CNS and Neurological Disorders, 4 (4): 331–347, https://doi.org/10.2174/1568007054546153.Google Scholar
  37. Smart D, Shaw C, Johnston C, Thim L, Halton D, Buchanan K. 1992. Peptide tyrosine phenylalanine: a novel neuropeptide F-related nonapeptide from the brain of the squid, Loligo vulgaris. Biochemical and Biophysical Research Communications, 186 (3): 1 616–1 623, https://doi.org/10.1016/S0006-291X(05)81593-1.CrossRefGoogle Scholar
  38. Sundström G, Larsson T A, Xu B, Heldin J, Larhammar D. 2013. Interactions of zebrafish peptide YYb with the neuropeptide Y-family receptors Y4, Y7, Y8a, and Y8b. Frontiers in Neuroscience, 7: 29, https://doi.org/10.3389/fnins.2013.00029.CrossRefGoogle Scholar
  39. Suzuki H, Yamamoto T, Nakagawa M, Uemura H. 2002. Neuropeptide Y-immunoreactive neuronal system and colocalization with FMRFamide in the optic lobe and peduncle complex of the octopus (Octopus vulgaris). Cell and Tissue Research, 307 (2): 255–264, https://doi.org/10.1007/s00441-001-0492-9.CrossRefGoogle Scholar
  40. Tensen C P, Cox K J A, Burke J F, Leurs R, van der Schors R C, Geraerts W P M, Vreugdenhil E, Van Heerikhuizen H. 1998. Molecular cloning and characterization of an invertebrate homologue of a neuropeptide Y receptor. European Journal of Neuroscience, 10 (11): 3 409–3 416, https://doi.org/10.1046/j.1460-9568.1998.00350.x.CrossRefGoogle Scholar
  41. Trzaskowski B, Latek D, Yuan S, Ghoshdastider U, Debinski A, Filipek S. 2012. Action of molecular switches in GPCRs—theoretical and experimental studies. Current Medicinal Chemistry, 19 (8): 1 090–1 109, https://doi.org/10.2174/092986712799320556.CrossRefGoogle Scholar
  42. Van Loy T, Vandersmissen H P, Poels J, Van Hiel M B, Verlinden H, Broeck J V. 2010. Tachykinin-related peptides and their receptors in invertebrates: a current view. Peptides, 31 (3): 520–524, https://doi.org/10.1016/j.peptides.2009.09.023.CrossRefGoogle Scholar
  43. Veenstra J A. 2010. Neurohormones and neuropeptides encoded by the genome of Lottia gigantea, with reference to other mollusks and insects. General and Comparative Endocrinology, 167 (1): 86–103, https://doi.org/10.1016/j.ygcen.2010.02.010.CrossRefGoogle Scholar
  44. White B D, Martin R J. 1997. Evidence for a central mechanism of obesity in the Zucker rat: role of neuropeptide Y and leptin. Proceedings of the Society for Experimental Biology and Medicine, 214 (3): 222–232, https://doi.org/10.3181/00379727-214-44090.CrossRefGoogle Scholar
  45. Wu C W, Dong Z Y, Chi C F, Ding F. 2010. Reproductive and spawning habits of Sepiella maindroni of Zhejiang, China. Oceanologia et Limnologia Sinica, 41 (1): 39–46. (in Chinese with English abstract)Google Scholar
  46. Wu Y Q, Tang Z C. 1990. Population composition and migratory distribution of cuttlefish (Sepiella maindroni de rochebrune) in the Huanghe estuary and the Laizhou gulf. Journal of Fisheries of China, 14 (2): 149–152. (in Chinese with English abstract)Google Scholar
  47. Yan Y J, Wang T M, Liu W, Wu C W, Zhu A Y, Chi C F, Lü Z M, Yang J W. 2016. Identification and Expression Profile of the Gonadotropin-Releasing Hormone Receptor in Common Chinese Cuttlefish, Sepiella japonica. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 325 (7): 453–466, https://doi.org/10.1002/jez.2030.CrossRefGoogle Scholar
  48. Zhang G F, Fang X D, Guo X M, Li L, Luo R B, Xu F, Yang P C, Zhang L L, Wang X T, Qi H G, Xiong Z Q, Que H Y, Xie Y L, Holland P W H, Paps J, Zhu Y B, Wu F C, Chen Y X, Wang J F, Peng C F, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z Y, Zhu Q H, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y J, Domazet-Lošo T, Du Y S, Sun X Q, Zhang S D, Liu B H, Cheng P Z, Jiang X T, Li J, Fan D D, Wang W, Fu W J, Wang T, Wang B, Zhang J B, Peng Z Y, Li Y X, Li N, Wang J P, Chen M S, He Y, Tan F J, Song X R, Zheng Q M, Huang R L, Yang H L, Du X D, Chen L, Yang M, Gaffney P M, Wang S, Luo L H, She Z X, Ming Y, Huang W, Zhang S, Huang B Y, Zhang Y, Qu T, Ni P X, Miao G Y, Wang J Y, Wang Q, Steinberg C E W, Wang H Y, Li N, Qian L M, Zhang G J, Li Y R, Yang H M, Liu X, Wang J, Yin Y, Wang J. 2012. The oyster genome reveals stress adaptation and complexity of shell formation. Nature, 490 (7418): 49–54, https://doi.org/10.1038/nature11413.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jingwen Yang (杨静文)
    • 1
  • Yuchao Xu (徐玉超)
    • 1
  • Ke Xu (许珂)
    • 1
  • Hongling Ping (平洪领)
    • 2
  • Huilai Shi (史会来)
    • 2
  • Zhenming Lü (吕振明)
    • 2
  • Changwen Wu (吴常文)
    • 1
  • Tianming Wang (王天明)
    • 1
  1. 1.National Engineering Research Center for Facilitated Marine Aquaculture, Marine Science CollegeZhejiang Ocean UniversityZhoushanChina
  2. 2.Marine Fisheries Research Institute of Zhejiang ProvinceZhoushanChina

Personalised recommendations