Advertisement

Applied Physics B

, 126:24 | Cite as

Entangled squeezed coherent states: generation and their nonclassical properties in comparison with other entangled states

  • Amir KarimiEmail author
  • Hassan Dibaji
Article
  • 18 Downloads

Abstract

In this paper, at first we consider special type of entangled states named “entangled squeezed coherent states” by using squeezed coherent states. Next, we study the entanglement characteristics of these entangled states by evaluating concurrence. In the continuation, we investigate some of their nonclassical properties such as quantum statistics which contained sub-Poissonian photon statistics and the oscillatory photon number distribution, second-order correlation function and quadrature squeezing for different squeezing values of two modes. In addition, we compare the results of the “entangled squeezed coherent states” with those of the common entangled states such as “entangled coherent states”, “entangled squeezed vacuum states” and “entangled squeezed one-photon states”. Finally, using the proposed theoretical scheme in the previous works, we will generate the entangled squeezed coherent states with different initial conditions. In this scheme, a \(\Lambda\)-type three-level atom interacts with the two-mode quantized field in the presence of two strong classical fields.

Notes

References

  1. 1.
    E. Schrödinger, Naturwissenschaften 23, 807, 823, 844 (1935)CrossRefGoogle Scholar
  2. 2.
    W. Diffie, M. Hellman, IEEE Trans. Inf. Theory 22, 644 (1976)CrossRefGoogle Scholar
  3. 3.
    A. Ekert, Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    L. Vaidman, Phys. Rev. A 49, 1473 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    S.L. Braunstein, H.J. Kimble, Phys. Rev. Lett. 80, 869 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    J. Joo, W.J. Munro, T.P. Spiller, Phys. Rev. Lett. 107, 083601 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    A. Barenco, D. Dutch, A. Ekert, R. Jozsa, Phys. Rev. Lett. 74, 4083 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    D.P. DiVincenzo, Science 270, 255 (1995)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    U. Akram, W.P. Bowen, G.J. Milburn, New J. Phys. 15, 093007 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    S. Dey, A. Fring, V. Hussin, Int. J. Mod. Phys. B 31, 1650248 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    B.C. Sanders, Phys. Rev. A 45, 6811 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    S.J. Van Enk, O. Hirota, Phys. Rev. A 64, 022313 (2000)CrossRefGoogle Scholar
  13. 13.
    X. Wang, B.C. Sanders, Phys. Rev. A 65, 012303 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    A. Karimi, M.K. Tavassoly, J. Opt. Soc. Am. B 31, 2345 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    A. Karimi, M.K. Tavassoly, Commun. Theor. Phys. 64, 341 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    A. Karimi, Int. J. Theor. Phys. 56, 2703 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    X.H. Cai, L.M. Kuang, Chin. Phys. 11, 870 (2002)ADSGoogle Scholar
  18. 18.
    L. Zhou, L.M. Kuang, Phys. Lett. A 302, 273 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    X.H. Cai, L.M. Kuang, Chin. Phys. Lett. 19, 1407 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    L. Xu, L.M. Kuang, J. Phys. A Math. Gen. 39, L191 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    H.M. Li, H.C. Yuan, H.Y. Fan, Int. J. Theor. Phys. 48, 2849 (2009)CrossRefGoogle Scholar
  22. 22.
    A. Karimi, M.K. Tavassoly, Phys. Scr. 90, 015101 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    A. Karimi, M.K. Tavassoly, Int. J. Theor. Phys. 55, 563 (2016)CrossRefGoogle Scholar
  24. 24.
    E. Dibakar, A. Karimi, M.K. Tavassoly, Phys. Scr. 90, 085102 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    A. Karimi, M.K. Tavassoly, Chin. Phys. B 25, 040303 (2016)CrossRefGoogle Scholar
  26. 26.
    A. Karimi, Appl. Phys. B 123, 181 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    R.L.Matos de Filho, W. Vogel, Phys. Rev. A 54, 4560 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    V. Man’kov, G. Marmo, E. Sudarshan, F. Zaccaria, Phys. Scr. 55, 528 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    M. Dakna, T. Anhut, T. Opatrn’y, L. Knoll, D.G. Welsch, Phys. Rev. A 55, 3184 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    C.C. Gerry, Phys. Rev. A 59, 4095 (1999)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    R. Roknizadeh, M.K. Tavassoly, J. Phys. A Math. Gen. 37, 8111 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    A.M. Lance, H. Jeong, N.B. Grosse, T. Symul, T.C. Ralph, P.K. Lam, Phys. Rev. A 73, 041801 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    A. Karimi, M.K. Tavassoly, Laser Phys. 25, 115201 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    A. Karimi, M.K. Tavassoly, Quantum. Inf. Process. 15, 1513 (2016)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    J.J. Gong, P.K. Aravind, Am. J. Phys. 58, 1003 (1990)ADSCrossRefGoogle Scholar
  36. 36.
    K. Zhu, Q. Wang, X. Li, J. Opt. Soc. Am. B 10, 1287 (1993)ADSCrossRefGoogle Scholar
  37. 37.
    H.Y. Fan, M.A. Xiao, Phys. Lett. A 220, 81 (1996)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Z. Shi-biao, G. Guang-can, Chin. Phys. Lett. 14, 273 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    A.F. Obada, G.A. Al-Kader, J. Opt. B 7, S635 (2005)CrossRefGoogle Scholar
  40. 40.
    S. Dey, A. Fring, Phys. Rev. D 86, 064038 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    G.S. Agarwal, Quantum Optics (Cambridge University Press, Cambridge, 2013)zbMATHGoogle Scholar
  42. 42.
    J. Glauber, Phys. Rev. 131, 2766 (1963)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    C.C. Gerry, P.L. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005)Google Scholar
  44. 44.
    L.X. Xia, G.X. Xiong, Generation for Entangled Squeezed Coherent States of Two Cavity Modes, Symposium on Photonics and Optoelectronics (2009)Google Scholar
  45. 45.
    A. DasGupta, Am. J. Phys. 64, 1422 (1996)ADSCrossRefGoogle Scholar
  46. 46.
    K.B. Møller, T.G. Jørgensen, J.P. Dahl, Phys. Rev. A 54, 5378 (1996)ADSCrossRefGoogle Scholar
  47. 47.
    M. Angelova, A. Hertz, V. Hussin, J. Phys. A Math. Theor. 46, 129501 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    A. Perelomov, Generalized Coherent States and Their Applications (Springer, Berlin, 1986)zbMATHCrossRefGoogle Scholar
  49. 49.
    J.A. Bergou, M. Hillery, D. Yu, Phys. Rev. A 43, 515 (1991)ADSCrossRefGoogle Scholar
  50. 50.
    H.-C. Fu, R. Sasaki, Phys. Rev. A 53, 3836 (1996)ADSCrossRefGoogle Scholar
  51. 51.
    N. Alvarez, V. Hussin, J. Math. Phys. 43, 2063 (2002)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    S. Hill, W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997)ADSCrossRefGoogle Scholar
  53. 53.
    X.G. Wang, J. Phys. A Math. Gen. 35, 165 (2002)ADSCrossRefGoogle Scholar
  54. 54.
    L.M. Kuang, L. Zhou, Phys. Rev. A 68, 043606 (2003)ADSCrossRefGoogle Scholar
  55. 55.
    A. Mann, B.C. Sanders, W.J. Munro, Phys. Rev. A 50, 989 (1995)ADSCrossRefGoogle Scholar
  56. 56.
    P. Rungta, V. Buzěk, C.M. Caves, M. Hillery, G.J. Milburn, Phys. Rev. A 64, 042315 (2001)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    L. Mandel, Opt. Lett. 4, 205 (1979)ADSCrossRefGoogle Scholar
  58. 58.
    L. Davidovich, Rev. Mod. Phys. 68, 127 (1996)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    H. Paul, Rev. Mod. Phys. 54, 1061 (1982)ADSCrossRefGoogle Scholar
  60. 60.
    T.Q. Song, H.Y. Fan, J. Phys. A Math. Gen. 35, 1071 (2002)ADSCrossRefGoogle Scholar
  61. 61.
    P. Kok, B.W. Lovett, Introduction to Optical Quantum Information Processing (Cambridge University Press, Cambridge, 2010)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Physics Department, Abadeh BranchIslamic Azad UniversityFarsIran
  2. 2.Department of Physics and AstronomyUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations