Advertisement

Applied Physics B

, 126:1 | Cite as

Pulse compression in graphene-clad microfiber as a saturable absorber in mode-locked fiber lasers: modeling and analysis

  • Vahid Ashoori
  • Mahdi ShayganmaneshEmail author
Article
  • 44 Downloads

Abstract

In this paper, the outstanding influence of self-phase modulation (SPM) induced by thermal nonlinear refractive index (TNRI) in graphene-clad microfiber on laser pulse width, during the mode-locking process, is demonstrated for the first time. To meet the requirements, analytical relations for effective absorption coefficient of graphene-clad microfiber (GCM), thermal nonlinear refractive index and self-phase-modulation parameter are presented. Improvement on pulse compression process by optimizing the GCM parameters such as microfiber diameter and graphene length is studied by the aid of Haus master equation.

Notes

References

  1. 1.
    X. Liu, Y. Cui, Flexible pulse-controlled fiber laser. Sci. Rep. 5, 9399 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    P. Grelu, N. Akhmediev, Dissipative solitons for mode-locked lasers. Nat. Photonics 6(2), 84 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Y.-G. Han, T. Tran, S.-H. Kim, S.B. Lee, Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature. Opt. Lett. 30(11), 1282–1284 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    H. Shi, Y. Song, R. Li, Y. Li, H. Cao, H. Tian, B. Liu, L. Chai, M. Hu, Review of low timing jitter mode-locked fiber lasers and applications in dual-comb absolute distance measurement. Nanotechnol. Precis. Eng. 1(4), 205–217 (2018)CrossRefGoogle Scholar
  5. 5.
    C. Zeng, X. Liu, L. Yun, Bidirectional fiber soliton laser mode-locked by single-wall carbon nanotubes. Opt. Express 21(16), 18937–18942 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    S. Rota-Rodrigo, I. Ibañez, M. López-Amo, Multi-wavelength fiber laser in single-longitudinal mode operation using a photonic crystal fiber Sagnac interferometer. Appl. Phys. B 110(3), 303–308 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    U. Keller, Recent developments in compact ultrafast lasers. Nature 424(6950), 831 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    L. Wang, P. Xu, Y. Li, J. Han, X. Guo, Y. Cui, X. Liu, L. Tong, Femtosecond mode-locked fiber laser at 1 μm via optical microfiber dispersion management. Sci. Rep. 8(1), 4732 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, A.C. Ferrari, Graphene mode-locked ultrafast laser. ACS Nano 4(2), 803–810 (2010)CrossRefGoogle Scholar
  10. 10.
    D. Li, H. Jussila, Y. Wang, G. Hu, T. Albrow-Owen, R.C. Howe, Z. Ren, J. Bai, T. Hasan, Z. Sun, Wavelength and pulse duration tunable ultrafast fiber laser mode-locked with carbon nanotubes. Sci. Rep. 8(1), 2738 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    X. Li, X. Yu, Z. Sun, Z. Yan, B. Sun, Y. Cheng, X. Yu, Y. Zhang, Q.J. Wang, High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction. Sci. Rep. 5, 16624 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    I.N. Duling, All-fiber ring soliton laser mode locked with a nonlinear mirror. Opt. Lett. 16(8), 539–541 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    M. Fermann, M. Hofer, F. Haberl, S. Craig-Ryan, Femtosecond fibre laser. Electron. Lett. 26(20), 1737–1738 (1990)CrossRefGoogle Scholar
  14. 14.
    K. Tamura, H. Haus, E. Ippen, Self-starting additive pulse mode-locked erbium fibre ring laser. Electron. Lett. 28(24), 2226–2228 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    X. Liu, Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser. Phys. Rev. A 81(2), 023811 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, A.C. Ferrari, Sub 200 fs pulse generation from a graphene mode-locked fiber laser. Appl. Phys. Lett. 97(20), 203106 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    E.J. Lee, S.Y. Choi, H. Jeong, N.H. Park, W. Yim, M.H. Kim, J.-K. Park, S. Son, S. Bae, S.J. Kim, Active control of all-fibre graphene devices with electrical gating. Nat. Commun. 6, 6851 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    X. Liu, X. Yao, Y. Cui, Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett. 121(2), 023905 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    Y.-W. Song, S. Yamashita, C.S. Goh, S.Y. Set, Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers. Opt. Lett. 32(2), 148–150 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    D. Popa, Z. Sun, T. Hasan, W. Cho, F. Wang, F. Torrisi, A. Ferrari, 74-fs nanotube-mode-locked fiber laser. Appl. Phys. Lett. 101(15), 153107 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    U. Keller, K.J. Weingarten, F.X. Kartner, D. Kopf, B. Braun, I.D. Jung, R. Fluck, C. Honninger, N. Matuschek, J.A. Der Au, Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    O. Okhotnikov, A. Grudinin, M. Pessa, Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications. New J. Phys. 6(1), 177 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    R. Song, H.-W. Chen, S.-P. Chen, J. Hou, Q.-S. Lu, A SESAM passively mode-locked fiber laser with a long cavity including a band pass filter. J. Opt. 13(3), 035201 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    W. Liu, L. Pang, H. Han, W. Tian, H. Chen, M. Lei, P. Yan, Z. Wei, 70-fs mode-locked erbium-doped fiber laser with topological insulator. Sci. Rep. 6, 19997 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    H.A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions. Nature 561(7724), 507 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    B. Yao, Y. Rao, Z. Wang, Y. Wu, J. Zhou, H. Wu, M. Fan, X. Cao, W. Zhang, Y. Chen, Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers. Sci. Rep. 5, 18526 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    T. Chen, H. Chen, D. Wang, Graphene saturable absorber based on slightly tapered fiber with inner air-cavity. J. Lightwave Technol. 33(11), 2332–2336 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z.X. Shen, K.P. Loh, D.Y. Tang, Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Func. Mater. 19(19), 3077–3083 (2009)CrossRefGoogle Scholar
  29. 29.
    J. Zapata, D. Steinberg, L.A. Saito, R. De Oliveira, A. Cárdenas, E.T. De Souza, Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation. Sci. Rep. 6, 20644 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Z.-B. Liu, M. Feng, W.-S. Jiang, W. Xin, P. Wang, Q.-W. Sheng, Y.-G. Liu, D. Wang, W.-Y. Zhou, J.-G. Tian, Broadband all-optical modulation using a graphene-covered-microfiber. Laser Phys. Lett. 10(6), 065901 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, Ultrafast all-optical graphene modulator. Nano Lett. 14(2), 955–959 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    X. Liu, H. Yang, Y. Cui, G. Chen, Y. Yang, X. Wu, X. Yao, D. Han, X. Han, C. Zeng, Graphene-clad microfibre saturable absorber for ultrafast fibre lasers. Sci. Rep. 6, 26024 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    V. Ashoori, M. Shayganmanesh, Analytical thermal modeling of graphene-clad microfiber as a saturable absorber in ultrafast fiber lasers. Appl. Phys. B 125(3), 40 (2019)ADSCrossRefGoogle Scholar
  34. 34.
    G. Demetriou, H.T. Bookey, F. Biancalana, E. Abraham, Y. Wang, W. Ji, A.K. Kar, Nonlinear optical properties of multilayer graphene in the infrared. Opt. Express 24(12), 13033–13043 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    M. Aliofkhazraei, N. Ali, W.I. Milne, C.S. Ozkan, S. Mitura, J.L. Gervasoni, Graphene Science Handbook: Nanostructure and Atomic Arrangement (CRC Press, Boca Raton, 2016)CrossRefGoogle Scholar
  36. 36.
    H.A. Haus, Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    R.W. Boyd, Nonlinear Optics (Elsevier, Amsterdam, 2003)Google Scholar
  38. 38.
    G.P. Agrawal, “Nonlinear Fiber Optics,” Nonlinear Science at the Dawn of the 21st Century (Springer, Berlin, 2000), pp. 195–211CrossRefGoogle Scholar
  39. 39.
    H.A. Haus, Theory of mode locking with a fast saturable absorber. J. Appl. Phys. 46(7), 3049–3058 (1975)ADSCrossRefGoogle Scholar
  40. 40.
    H. Haus, Theory of mode locking with a slow saturable absorber. IEEE J. Quantum Electron. 11(9), 736–746 (1975)ADSCrossRefGoogle Scholar
  41. 41.
    C. Daengngam, Second-Order Nonlinear Optical Responses in Tapered Optical Fibers with Self-Assembled Organic Multilayers (Virginia Tech, Blacksburg, 2012)Google Scholar
  42. 42.
    S. Richard, Second-harmonic generation in tapered optical fibers. JOSA B 27(8), 1504–1512 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsIran University of Science and TechnologyTehranIran

Personalised recommendations