Advertisement

Applied Physics B

, 125:227 | Cite as

Athermalization of a self-assembled rolled-up TiO2 microtube ring resonator through incorporation of a positive thermo-optic coefficient material in planar bilayers

  • Abbas MadaniEmail author
  • Setareh Sedaghat
Article
Part of the following topical collections:
  1. Optical Nanofibers and Microresonators

Abstract

For the first time, this paper theoretically and experimentally investigates the thermal stability of optical filters based on self-assembled TiO2 rolled-up microtube ring resonators (RUMRs) by incorporating positive thermo-optic coefficient (TOC) materials (e.g., SiO2 and/or Si3N4). The influence of the TOC, refractive index, and thickness of the positive TOC materials on the filtering performance of the TiO2 RUMR is theoretically studied. The results illustrate that an increase in temperature leads to a blueshift in the resonant wavelength of the RUMR-based optical filter, which changes at a rate of − 33.3 pm/K owing to the negative TOC of TiO2 (− 4.9 ± 0.5 × 10−5/K). By increasing the thickness of SiO2 or Si3N4 as a positive TOC material together with TiO2, the temperature-induced resonant shifts of TiO2/SiO2 and/or TiO2/Si3N4 RUMRs are theoretically obtained. The TIRS varies between − 40 pm/K (− 22 pm/K) and about 30 pm/K (22 pm/K) for TiO2/SiO2 (TiO2/Si3N4) RUMRs. It is shown that thermal stability occurs when the thickness of the SiO2 (Si3N4) layer is ~ 16 nm (12 nm). At the end of this study, as a proof of concept, an experiment is demonstrated by fabricating an RUMR based on TiO2/SiO2 on the flat silicon wafer. The experimental results show that the athermalization of the system is experimentally achieved by selecting the appricated thickness ratio of TiO2/SiO2. This novel approach for athermalization of the resonators opens up interesting perspectives on the implementation of vertical and multi-routing coupling between photonic and optoelectronic layers and more specifically in a three-integration fashion.

Notes

References

  1. 1.
    D.A.B. Miller, Optical interconnects to electronic chips. Appl. Opt. 49, F59–F70 (2010)CrossRefGoogle Scholar
  2. 2.
    M. Smit, J. van der Tol, M. Hill, Moore’s law in photonics. Laser Photonics Rev. 6, 1–13 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    J.D. Suter, I.M. White, H. Zhu, X. Fan, Thermal characterization of liquid core optical ring resonator sensors. Appl. Opt. 46, 389 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    M.R. Foreman, W.-L. Jin, F. Vollmer, Optimizing detection limits in whispering gallery mode biosensing. Opt. Express 22, 5491 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, R. Baets, Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides. Opt. Express 17, 14627 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    V. Raghunathan, W.N. Ye, J. Hu, T. Izuhara, J. Michel, L.C. Kmerling, Athermal operation of Silicon waveguides: spectral, second order and footprint dependencies. Opt. Express 18, 17631 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    S. Feng, K. Shang, J.T. Bovington, R. Wu, B. Guan, K.T. Cheng, J.E. Bowers, S.J.B. Yoo, Athermal silicon ring resonators clad with titanium dioxide for 1.3 µm wavelength operation. Opt. Express 23(20), 25653–25660 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    V. Raghunathan, T. Izuhara, J. Michel, L. Kimerling, Stability of polymer-dielectric bi-layers for athermal silicon photonics. Opt. Express 20(14), 16059–16066 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    S. Namnabat, K. Kim, A. Jones, R. Himmelhuber, C. DeRose, D. Trotter, A. Starbuck, A. Pomerene, A. Lentine, R. Norwood, Athermal silicon optical add-drop multiplexers based on thermo-optic coefficient tuning of sol-gel material. Opt. Express 25, 21471–21482 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    J.T. Choy, J.D.B. Bradley, P.B. Deotare, I.B. Burgess, ChC Evans, E. Mazur, M. Lončar, Integrated TiO2 resonators for visible photonics. Opt. Lett. 37, 539–541 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    F. Qiu, A.M. Spring, S. Yokoyama, Athermal and high-Q hybrid TiO2–Si3N4 ring resonator via an etching-free fabrication technique. ACS Photonics 2, 405–409 (2015)CrossRefGoogle Scholar
  12. 12.
    O. Reshef, K. Shtyrkova, M.G. Moebius, S. Griesse-Nascimento, S. Spector, C.C. Evans et al., Polycrystalline anatase titanium dioxide microring resonators with negative thermo-optic coefficient. J. Opt. Soc. Am. B 32, 2288–2293 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    F. Ou, X. Li, B. Liu, Y. Huang, S.-T. Ho, Enhanced radiation-loss-based radial-waveguide-coupled electrically pumped microresonator lasers with single-directional output. Opt. Lett. 35, 1722–1724 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    I. Teraoka, Analysis of thermal stabilization of whispering gallery mode resonance. Opt. Commun. 310, 212 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    S. Lane, Y. Zhi, F. Marsiglio, A. Meldrum, Refractometric sensitivity and thermal stabilization of fluorescent core microcapillary sensors: theory and experiment. Appl. Opt. 6, 1331–1340 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    F. Qiu, F. Yu, A.M. Spring, Sh Yokoyama, Athermal silicon nitride ring resonator by photobleaching of Disperse Red 1-doped poly (methyl methacrylate) polymer. Opt. Lett. 37, 0146–9592 (2012)Google Scholar
  17. 17.
    F. Qiu, F. Yu, A.M. Spring, Sh Yokoyama, Complementary metal–oxide–semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators. Appl. Phys. Lett. 102, 051106 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    K.J. Vahala, Optical microcavities. Nature 424, 839–846 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    M.S. Luchansky, R.C. Bailey, High-Q optical sensors for chemical and biological analysis. Anal. Chem. 84, 793–821 (2012)CrossRefGoogle Scholar
  20. 20.
    S.M. Harazim, W. Xi, C.K. Schmidt, S. Sanchez, O.G. Schmidt, Fabrication and applications of large arrays of multifunctional rolled-up SiO/SiO2 microtubes. J. Mater. Chem. 22, 2878–2884 (2012)CrossRefGoogle Scholar
  21. 21.
    J. Zhang, J. Zhong, Y.F. Fang, J. Wang, G.S. Huang, X.G. Cui et al., Roll up polymer/oxide/polymer nanomembranes as a hybrid optical microcavity for humidity sensing. Nanoscale 6, 13646–13650 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    G. Huang, V.A. Bolaños Quiñones, F. Ding, S. Kiravittaya, Y. Mei, O.G. Schmidt, Rolled-up optical microcavities with subwavelength wall thicknesses for enhanced liquid sensing applications. ACS Nano 4, 3123–3130 (2010)CrossRefGoogle Scholar
  23. 23.
    S.M. Harazim, V.A. Bolanos Quinones, S. Kiravittaya, S. Sanchez, O.G. Schmidt, Lab-in-a-tube: on-chip integration of glass optofluidic ring resonators for label-free sensing applications. Lab Chip 12, 2649–2655 (2012)CrossRefGoogle Scholar
  24. 24.
    A. Madani, S.M. Harazim, V.A. Bolaños Quiñones, M. Kleinert, A. Finn, E.S. Ghareh Naz et al., Optical microtube cavities monolithically integrated on photonic chips for optofluidic sensing. Opt. Lett. 42, 486–489 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    A. Madani, M. Kleinert, D. Stolarek, L. Zimmermann, L. Ma, O.G. Schmidt, Vertical optical ring resonators fully integrated with nanophotonic waveguides on silicon-on-insulator substrates. Opt. Lett. 40, 3826–3829 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    S. Sedaghat, A. Zarifkar, Tunable optical filter based on self-rolled-up microtube incorporating nematic liquid crystal. Opt. Mater. 67, 113–118 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    S. Sedaghat, A. Zarifkar, Vertical integration of self-rolled-up microtube and silicon waveguides: a two-channel optical add–drop multiplexer. Chin. Opt. Lett. 15, 022501.1–022501.5 (2017)Google Scholar
  28. 28.
    S. Sedaghat, A. Zarifkar, Evanescent coupling of asymmetric self-rolled-up microtube and slab waveguide. Opt. Commun. 382, 167–175 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    D. Karnaushenko, D.D. Karnaushenko, D. Makarov, S. Baunack, R. Schäfer, O.G. Schmidt, Self-assembled on-chip-integrated giant magneto-impedance sensorics. Adv. Mater. 27, 6582–6589 (2015)CrossRefGoogle Scholar
  30. 30.
    S. Schwaiger, M. Bröll, A. Krohn, A. Stemmann, C. Heyn, Y. Stark et al., Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime. Phys. Rev. Lett. 102, 163903.1–163903.4 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    A. Madani, S. Böttner, M.R. Jorgensen, O.G. Schmidt, Rolled-up TiO2 optical microcavities for telecom and visible photonics. Opt. Lett. 39, 189–192 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    S.M. Weiz, M. Medina-Sánchez, O.G. Schmidt, Microsystems for single-cell analysis. Adv. Biosyst. 2, 1700193 (2018)CrossRefGoogle Scholar
  33. 33.
    S. Böttner, S. Li, M.R. Jorgensen, O.G. Schmidt, Vertically aligned rolled-up SiO2 optical microcavities in add-drop configuration. Appl. Phys. Lett. 102, 251119.1–251119.4 (2013)CrossRefGoogle Scholar
  34. 34.
    R. Songmuang, A. Rastelli, S. Mendach, O.G. Schmidt, SiOx∕Si radial superlattices and microtube optical ring resonators. Appl. Phys. Lett. 90, 091905.1–091905.3 (2007)CrossRefGoogle Scholar
  35. 35.
    X. Yu, E. Arbabi, L.L. Goddard, X. Li, X. Chen, Monolithically integrated self-rolled-up microtube-based vertical coupler for three-dimensional photonic integration. Appl. Phys. Lett. 107, 031102.1–031102.5 (2015)Google Scholar
  36. 36.
    V.Y. Prinz, V.A. Seleznev, A.K. Gutakovsky, A.V. Chehovskiy, V.V. Preobrazhenskii, M.A. Putyato et al., Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays. Phys. E Low Dimens. Syst. Nanostruct. 6, 828–831 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    S. Böttner, Sh Li, J. Trommer, S. Kiravittaya, O.G. Schmidt, Sharp whispering-gallery modes in rolled-up vertical SiO2 microcavities with quality factors exceeding 5000. Opt. Lett. 37, 5136–5138 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Integrative NanosciencesIFW DresdenDresdenGermany
  2. 2.Department of Communications and ElectronicsShiraz UniversityShirazIran
  3. 3.Cambridge Graphene CentreUniversity of CambridgeCambridgeUK

Personalised recommendations