Advertisement

Applied Physics B

, 125:220 | Cite as

Evolutionary algorithm-assisted design of a UV SHG cavity with elliptical focusing to avoid crystal degradation

  • Daniel Preißler
  • Daniel Kiefer
  • Thorsten Führer
  • Thomas WaltherEmail author
Article
  • 47 Downloads

Abstract

Long-term laser operation in the UV by frequency doubling in BBO is often limited due to degradation effects. We theoretically investigate the impact of elliptical focusing on the fundamental peak intensity to reduce the risk of crystal damage. After choosing a suitable elliptical Gaussian mode allowing for significantly lower fundamental peak intensity without sacrificing second harmonic output power, we describe an optimisation algorithm to find a stable resonator with cylindrical mirrors to ensure an elliptical focus with the specific beam waists inside the crystal. Experimental results achieved with this cavity are discussed.

Notes

Acknowledgements

Funding by the Federal Ministry of Education and Research (BMBF) under Grant numbers 05P15RDFA1, 05P09RDFA3 and 05P12RDRB2 is gratefully acknowledged.

References

  1. 1.
    M. Brieger, H. Busener, A. Hese, Fv Moers, A. Renn, Enhancement of single frequency SHG in a passive ring resonator. Opt. Commun. 38(5), 423–426 (1981)ADSCrossRefGoogle Scholar
  2. 2.
    J.C. Bergquist, Hamid Hemmati, Wayne M. Itano, High power second harmonic generation of 257 nm radiation in an external ring cavity. Opt. Commun. 43(6), 437–442 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    D. Kolbe, M. Scheid, J. Walz, Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation. Phys. Rev. Lett. 109(August), 063901 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    T. Beck, B. Rein, F. Sörensen, T. Walther, Solid-state-based laser system as a replacement for Ar\(^+\) lasers. Opt. Lett. 41(18), 4186 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Taira, High-power continous-wave ultraviolet generation by frequency doubling of an argon laser. Jpn. J. Appl. Phys. 31, 682–684 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    T. Südmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, S. Kubota, Efficient 2\(^{\text{ nd }}\) and 4\(^{\text{ th }}\) harmonic generation of a single frequency, continuous-wave fiber amplifier. Opt. Express 16(3), 1546–1551 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    M. Petersen, R. Chicireanu, S.T. Dawkins, D.V. Magalhães, C. Mandache, Y. Le Coq, A. Clairon, S. Bize, Doppler-free spectroscopy of the \(^1\text{ S }_0\)-\(^3\text{ P }_0\) optical clock transition in laser-cooled fermionic isotopes of neutral mercury. Phys. Rev. Lett. 101(18), 1–4 (2008)CrossRefGoogle Scholar
  8. 8.
    K. Takachiho, M. Yoshimura, Y. Takahashi, M. Imade, T. Sasaki, Y. Mori, Ultraviolet laser-induced degradation of CsLiB\(_6\)O\(_{10}\) and \(\beta \)-BaB\(_2\)O\(_4\). Opt. Mater. Express 4(3), 559 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    M. Scheid, F. Markert, J. Walz, J. Wang, M. Kirchner, T.W. Hänsch, 750 mW continuous-wave solid-state deep ultraviolet laser source at the 253.7 nm transition in mercury. Opt. Lett. 32(8), 955 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    K. Kondo, M. Oka, H. Wada, T. Fukui, N. Umezu, K. Tatsuki, S. Kubota, Demonstration of long-term reliability of a 266-nm, continuous-wave, frequency-quadrupled solid-state laser using \(\beta \)-BaB\(_2\)O\(_4\). Opt. Lett. 23(3), 195 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    L. De Sarlo, M. Favier, R. Tyumenev, S. Bize, A mercury optical lattice clock at LNE-SYRTE. J. Phys. Conf. Series 723(1), (2016)Google Scholar
  12. 12.
    R.G. Batchko, M.M. Fejer, R.L. Byer, E. Zanger, R. Müller, B. Liu, M. Kötteritzsch, W. Gries, Diode-pumped cw all solid-state laser at 266 nm. in Advanced Solid State Lasers. (Optical Society of America, 1999), p. MB4Google Scholar
  13. 13.
    J.J. McFerran, L. Yi, S. Mejri, W. Zhang, S. Di Manno, M. Abgrall, J. Guéna, Y. Le Coq, S. Bize, Statistical uncertainty of \(2.5\times 10^{-16}\) for the \(^{199}\)Hg \(^1\text{ S }_0\)-\(^3\text{ P }_0\) clock transition against a primary frequency standard. Phys. Rev. A Atomic Mol. Opt. Phys. 89(4), 4–11 (2014)CrossRefGoogle Scholar
  14. 14.
    S.J. Rehse, S.A. Lee, Generation of 125 mW frequency stabilized continuous-wave tunable laser light at 295 nm by frequency doubling in a BBO crystal. Opt. Commun. 213(4–6), 347–350 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    A. Steinbach, M. Rauner, F.C. Cruz, J.C. Bergquist, CW second harmonic generation with elliptical Gaussian beams. Opt. Commun. 123, 207–214 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    M. Vainio, J.E. Bernard, L. Marmet, Cavity-enhanced optical frequency doubler based on transmission-mode Hänsch-Couillaud locking. Appl. Phys. B Lasers Opt. 104(4), 897–908 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, S. Schiller, Compact all-solid-state continuous-wave single-frequency UV source with frequency stabilization for laser cooling of Be\(^+\) ions. Appl. Phys. B Lasers Opt. 103(1), 27–33 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    D. Kiefer, D. Preißler, T. Führer, T. Walther, Non-degrading CW UV generation in \(\beta \) -barium borate at 257 nm using an elliptical focusing enhancement cavity. Laser Phys. Lett. 16(7), 075403 (2019)ADSCrossRefGoogle Scholar
  19. 19.
    N. Kondratyuk, A.A. Shagov, Nonlinear absorption at 266 nm in BBO crystal and its influence on frequency conversion. in ICONO 2001: Nonlinear Optical Phenomena and Nonlinear Dynamics of Optical Systems, vol. 4751, (2002), pp. 110–115Google Scholar
  20. 20.
    Tim Freegarde, Julian Coutts, Jochen Walz, Dietrich Leibfried, T.W. Hänsch, General analysis of type I secondharmonic generation with elliptical Gaussian beams. J. Opt. Soc. Am. B 14(8), 2010–2016 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    G.D. Boyd, D.A. Kleinman, Parametric interaction of focused Gaussian light beams. J. Appl. Phys. 39(8), 3597–3639 (1968)ADSCrossRefGoogle Scholar
  22. 22.
    W.J. Kozlovsky, C.D. Nabors, R.L. Byer, Second-harmonic generation of a continuous-wave diode-pumped Nd:YAG laser using an externally resonant cavity. Opt. Lett. 12, 1014–1016 (1987)ADSCrossRefGoogle Scholar
  23. 23.
    W.J. Kozlovsky, C.D. Nabors, R.L. Byer, Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO\(_{\text{3 }}\) external resonant cavities. IEEE J. Quantum Electron 24, 913–919 (1988)ADSCrossRefGoogle Scholar
  24. 24.
    E. Polzik, H. Kimble, Frequency doubling with KNbO\(_\text{3 }\) in an external cavity. Opt. Lett. 16, 1400–1402 (1991)ADSCrossRefGoogle Scholar
  25. 25.
    EvA2. Eberhard Karls Universität Tübingen, http://www.ra.cs.uni-tuebingen.de/software/eva2/. Accessed 10 Jan 2019
  26. 26.
    A.E. Siegman, Lasers (University Science Books, Sausalito, 1986)Google Scholar
  27. 27.
    Thorsten Führer, Denise Stang, Thomas Walther, Actively controlled tuning of an external cavity diode laser by polarization spectroscopy. Opt. Express 17(7), 4991–6 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    T. Führer, T. Walther, Control and active stabilization of the linewidth of an ECDL. Appl. Phys. B 108(2), 249–253 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut Für Angewandte Physik, Laser und QuantenoptikTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations