Applied Physics B

, 125:222 | Cite as

An original LIBS system based on TEA CO2 laser as a tool for determination of glass surface hardness

  • M. MomcilovicEmail author
  • S. Zivkovic
  • J. Petrovic
  • I. Cvijovic-Alagic
  • J. Ciganovic


This study was carried out to examine the applicability of original laser-induced breakdown spectroscopy (LIBS) setup for determination of the surface hardness of lead glass as a function of its chemical composition. For this purpose, a set of five lead glass samples with different amount of ZrO2 was prepared. The LIBS measurements were carried out using TEA CO2 laser in the air at atmospheric pressure and without sample preparation. A ratio of the intensity between the Zr(II) 355.66 nm and Zr(I) 360.12 nm emission lines has been used to examine the hardness of the material. In addition, the surface hardness of glass samples was determined by Vickers’s indentation tests. Obtained results indicate a linear relationship of the measurements of hardness in glass samples between the LIBS and Vickers method. To show that LIBS based on TEA CO2 laser is an almost nondestructive technique, profilometric surface analysis was used. The proposed LIBS system is suitable not only for a spectrochemical analysis but also as an easy to use and cost-effective way to measure the surface hardness for all types and shapes of glass samples which are in some cases difficult to examine by standard Vicker’s method.



This research was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia through the project, “Effects of Laser Radiation on Novel Materials in Their Synthesis, Modifications, and Analysis” (project no. 172019) and “Micromechanical criteria of damage and fracture” (project no. 174004). The authors cordially thank Dr. Milan Trtica for technical support about the TEA CO2 laser.


  1. 1.
    C.B. Carter, M.G. Norton, Ceramic materials: Science and engineering (Springer, New York, USA, 2013)CrossRefGoogle Scholar
  2. 2.
    M. Yamane, Y. Asahara, Glasses for photonics (Cambridge University Press, Cambridge, United Kingdom, 2000)CrossRefGoogle Scholar
  3. 3.
    A. Stronski, O. Paiuk, A. Gudymenko, V. Klad’Ko, P. Oleksenko, N. Vuichyk, M. Vlček, I. Lishchynskyy, E. Lahderanta, A. Lashkul, A. Gubanova, T. Krys’Kov, Ceram. Int. 41(6), 7543–7548 (2015)CrossRefGoogle Scholar
  4. 4.
    G.A. Rosales-Sosa, A. Masuno, Y. Higo, H. Inoue, Sci. Rep. 6, 23620 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    A.K. Varshneya, Fundamentals of Inorganic Glasses, 1st edn. (Academic Press, USA, 1993)Google Scholar
  6. 6.
    A. De Giacomo, M. Dell’Aglio, O. De Pascale, R. Gaudiuso, R. Teghil, A. Santagata, G.P. Parisi, Appl. Surf. Sci. 253(19), 7677–7681 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    H. Wiggenhauser, D. Schaurich, G. Wilsch, NDT E Int. 31(4), 307–313 (1998)CrossRefGoogle Scholar
  8. 8.
    J. El Haddad, L. Canioni, B. Bousquet, Spectrochim. Acta Part B At. Spectrosc. 101, 171–182 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    D.W. Hahn, N. Omenetto, Appl. Spectrosc. 66(4), 347–419 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    A.J.R. Bauer, S.G. Buckley, Appl. Spectrosc. 71(4), 553–566 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    R. Gaudiuso, M. Dell’Aglio, O. de Pascale, G.S. Senesi, A. de Giacomo, Sensors. 10(8), 7434–7468 (2010)CrossRefGoogle Scholar
  12. 12.
    D.F. Mohamed, A.H. Galmed, O.A. Nassef, Arab J. Nucl. Sci. Appl. 50(4), 142–155 (2017)Google Scholar
  13. 13.
    K. Tsuyuki, S. Miura, N. Idris, K.H. Kurniawan, T.J. Lie, K. Kagawa, Appl. Spectrosc. 60(1), 61–64 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Z.A. Abdel-Salam, A.H. Galmed, E. Tognoni, M.A. Harith, Spectrochim. Acta Part B At. Spectrosc. 62(12), 1343-1347, (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Z.A. Abdel-Salam, M.A. Harith, A.I.P. Conf, Proc. 1047(1), 133–135 (2008)Google Scholar
  16. 16.
    S. Messaoud Aberkane, A. Bendib, K. Yahiaoui, S. Boudjemai, S. Abdelli-Messaci, T. Kerdja, S.E. Amara, M.A. Harith, Appl. Surf. Sci. 301, 225–229 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    M.M. ElFaham, A.M. Alnozahy, A. Ashmawy, Mater. Chem. Phys. 207, 30–35 (2018)CrossRefGoogle Scholar
  18. 18.
    G. Vítková, L. Prokeš, K. Novotný, P. Pořízka, J. Novotný, D. Všianský, L. Čelko, J. Kaiser, Spectrochim. Acta Part B. At. Spectrosc. 101, 191–199 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Li, J. Lu, Y. Dai, M. Dong, W. Zhong, S. Yao, Appl. Surf. Sci. 346, 302–310 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    S. Zivkovic, J. Savovic, M. Trtica, J. Mutic, M. Momcilovic, J. Alloys Compd. 700, 175–184 (2017)CrossRefGoogle Scholar
  21. 21.
    S. Zivkovic, M. Momcilovic, A. Staicu, J. Mutic, M. Trtica, J. Savovic, Spectrochim. Acta Part B. At. Spectrosc. 128, 22–29 (2017)CrossRefGoogle Scholar
  22. 22.
    S. Zivkovic, J. Savovic, M. Kuzmanovic, J. Petrovic, M. Momcilovic, Microchem. J. 137, 410–417 (2018)CrossRefGoogle Scholar
  23. 23.
    D. Campos, S.S. Harilal, A. Hassanein, J. Appl. Phys. 108(1), 113305, (2010)ADSCrossRefGoogle Scholar
  24. 24.
    M.A. Khater, P. van Kampen, J.T. Costello, J.-P. Mosnier, E.T. Kennedy, J. Phys. D Appl. Phys. 33(18), 2252, (2000)ADSCrossRefGoogle Scholar
  25. 25.
    E. Grifoni, S. Legnaioli, M. Lezzerini, G. Lorenzetti, S. Pagnotta, V. Palleschi, J. Spectrosc. 71(4), 721–727 (2014)Google Scholar
  26. 26.
    F. Sorrentino, G. Carelli, F. Francesconi, M. Francesconi, P. Marsili, G. Cristoforetti, S. Legnaioli, V. Palleschi, E. Tognoni, Spectrochim. Acta Part B. At. Spectrosc. 64(10), 1068–1072 (2009)CrossRefGoogle Scholar
  27. 27.
    M. Momcilovic, J. Ciganovic, D. Rankovic, U. Jovanovic, M. Stoiljkovic, J. Savovic, M. Trtica, J. Serbian Chem. Soc. 80(12), 1505–1513 (2015)CrossRefGoogle Scholar
  28. 28.
    J.J. Savović, S.M. Živković, M. Momčilović, M. Trtica, M. Stoiljković, M. Kuzmanović, J. Serbian Chem. Soc. 82(10), 1135-1145 (2017)CrossRefGoogle Scholar
  29. 29.
    C. Buerhop, B. Blumenthal, R. Weissmann, N. Lutz, S. Biermann, Appl. Surf. Sci. 46, 430–434 (1990)ADSCrossRefGoogle Scholar
  30. 30.
    F.H. Margha, S.A.H.M. Abdel-Hameed, N.A.E.S. Ghonim, S.A. Ali, S. Kato, S. Satokawa, T. Kojima, Ceram. Int. 35(3), 1133–1137 (2009)CrossRefGoogle Scholar
  31. 31.
    M. Momcilovic, M. Kuzmanovic, D. Rankovic, J. Ciganovic, M. Stoiljkovic, J. Savovic, M. Trtica, Appl. Spectrosc. 69(4), 419–429 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    J. Savovic, M. Stoiljkovic, M. Kuzmanovic, M. Momcilovic, J. Ciganovic, D. Rankovic, S. Zivkovic, M. Trtica, Spectrochim. Acta Part B. At. Spectrosc. 118, 127–136 (2016)CrossRefGoogle Scholar
  33. 33.
    A.M. Keszler, L. Nemes, J. Mol. Struct. 695, 211–218 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    M. Momcilovic, M. Trtica, J. Ciganovic, J. Savovic, J. Stasic, M. Kuzmanovic, Appl. Surf. Sci. 270, 486–494 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    J. Ciganovic, S. Zivkovic, M. Momcilovic, J. Savovic, M. Kuzmanovic, M. Stoiljkovic, M. Trtica, Opt. Quantum Electron. 48, 133 (2016)CrossRefGoogle Scholar
  36. 36.
    D. Bergstrom, J. Powell, A.F.H. Kaplan, J. Appl. Phys. 101(11), 113504 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Nuclear Sciences VincaUniversity of BelgradeBelgradeSerbia

Personalised recommendations