Advertisement

Applied Physics B

, 125:219 | Cite as

Laser-induced emission of TiO2 nanoparticles in flame spray synthesis

  • S. De IuliisEmail author
  • F. Migliorini
  • R. Dondè
Article
  • 42 Downloads
Part of the following topical collections:
  1. Laser-Induced Incandescence

Abstract

Oxide nanoparticles are widely studied because of their unique properties, including their crystalline phase, surface area, and porosity, which make them attractive for several applications. These properties are related to the increase in the surface/volume ratio when moving from the bulk to the nanoscale. For this reason, a diagnostic tool capable of monitoring the nanoparticle size and concentration during synthesis is particularly valuable. The laser-induced incandescence technique is widely used to provide such information. This study explored the applicability of this technique to TiO2 nanoparticles in flame spray synthesis. The fluorescence, flame emission, and incandescence signals were investigated. Time-resolved spectral measurements were first carried out on TiO2 nanoparticles deposited on a filter. At low laser fluences, the fluorescence signal of anatase TiO2 nanoparticles was detected. At higher fluences, the incandescence signal appeared. A fluence threshold limit that depended on the matrix effect was observed, above which breakdown phenomena occur. Then, laser-induced incandescence spectral measurements were performed on the flame spray at different heights above the burner and different acquisition delay times. The analysis showed the applicability and challenges in using this diagnostic tool in flame spray synthesis.

Notes

Acknowledgements

The authors acknowledge the fruitful technical support provided by Mr. Gianni Brunello. This work was supported by the I-ZEB project (Towards Intelligent Zero Energy Buildings for a smart city growth), in the framework of the Accordo Quadro Regione Lombardia/CNR.

References

  1. 1.
    L. Madler, H.K. Kammler, R. Mueller, S.E. Pratsinis, J. Aerosol. Sci. 33, 369–389 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    R. Strobel, A. Baiker, S.E. Pratsinis, Adv. Powder Technol. 17(5), 457–480 (2006)CrossRefGoogle Scholar
  3. 3.
    R. Koirala, S.E. Pratsinis, A. Baiker, Chem. Soc. Rev. 45, 3053–3068 (2016)CrossRefGoogle Scholar
  4. 4.
    A.J. Grohn, S.E. Pratsinis, A. Sanchez-Ferrer, R. Mezzenga, K. Wegner, Ind. Eng. Chem. Res. 53, 10734–10742 (2014)CrossRefGoogle Scholar
  5. 5.
    H.A. Michelsen, C. Schultz, G.J. Smallwood, S. Will, Prog. Energy Combust. Sci. 51, 2–48 (2015)CrossRefGoogle Scholar
  6. 6.
    C. Schultz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bourgie, R. Suntz, G. Smallwood, Appl. Phys. B 83(3), 333–354 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    S. De Iuliis, F. Cignoli, G. Zizak, Appl. Opt. 44(34), 7414–7423 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    D.R. Snelling, G.J. Smallwood, F. Liu, O.L. Gulder, W.D. Bachalo, Appl. Opt. 44(31), 6773–6785 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    S. De Iuliis, F. Migliorini, F. Cignoli, G. Zizak, Proc. Combust. Inst. 31(1), 869–876 (2007)CrossRefGoogle Scholar
  10. 10.
    F. Migliorini, S. De Iuliis, S. Maffi, G. Zizak, Appl. Phys. B 112(2), 433–440 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    F. Migliorini, S. De Iuliis, S. Maffi, G. Zizak, Appl. Phys. B 120, 417–427 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    S. De Iuliis, F. Migliorini, F. Cignoli, G. Zizak, Appl. Phys. B 83, 397–402 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    R.L. Vander Wall, T.M. Ticich, J.R. West, Appl. Opt. 38(27), 5867–5879 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    T.A. Sipkens, Advances in the Modeling of Time-Resolved Laser-Induced Incandescence PhD Thesis, University of Waterloo, Ontario, Canada, 2018Google Scholar
  15. 15.
    Y. Murakami, T. Sugatani, Y. Nosaka, J. Phys. Chem. A 108(40), 8994–9000 (2005)CrossRefGoogle Scholar
  16. 16.
    T.A. Sipkens, N.R. Singh, K.J. Daun, Appl. Phys. B 123(1), 14–30 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    A. Eremin, E. Gurentsov, C. Schulz, J. Phys. D Appl. Phys. 41, 1–5 (2008)CrossRefGoogle Scholar
  18. 18.
    S.T. Moghaddam, K.J. Daun, Appl. Phys. B 124(8), 159–178 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    A.V. Fillipov, M.W. Markus, P. Roth, J. Aerosol. Sci. 30(1), 71–87 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    B.F. Kock, C. Cayan, J. Knipping, H.R. Orthner, P. Roth, Proc. Combust. Inst. 30, 1689–1697 (2005)CrossRefGoogle Scholar
  21. 21.
    G.S. Eom, C.W. Park, Y.H. Shin, K.H. Chung, S. Park, W. Choe, J.W. Hahn, Appl. Phys. Lett. 83(6), 1261–1263 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    J. Menser, K. Daun, T. Dreier, C. Schulz, Appl. Phys. B 122(11), 277 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    T.A. Sipkens, R. Mansmann, K.J. Daun, N. Petermann, J.T. Titantah, M. Karttunen, H. Wiggers, T. Dreier, C. Schutz, Appl. Phys. B 116, 623–636 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    R. Mueller, L. Madler, S.E. Pratsinis, Chem. Eng. Sci. 58, 1969–1976 (2003)CrossRefGoogle Scholar
  25. 25.
    D. Allen, H. Krier, N. Glumac, J. Heat Transf. 138(11), 112401 (2016)CrossRefGoogle Scholar
  26. 26.
    P. Roth, Proc. Combust. Inst. 31, 1773–1788 (2007)CrossRefGoogle Scholar
  27. 27.
    K.J. Daun, Int. J. Heat Mass Transf. 52(21), 5081–5089 (2009)CrossRefGoogle Scholar
  28. 28.
    K.J. Daun, J.T. Titantah, M. Karttunen, Appl. Phys. B 107(1), 221–228 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    K.J. Daun, T.A. Sipkens, J.T. Titantah, M. Karttunen, Appl. Phys. B 112, 409–420 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    S. Maffi, F. Cignoli, C. Bellomunno, S. De Iuliis, G. Zizak, Spectrochim. Acta Part B 63, 202–209 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    F. Cignoli, C. Bellomunno, S. Maffi, G. Zizak, Appl. Phys. B 96, 399–593 (2009)CrossRefGoogle Scholar
  32. 32.
    J. Shi, J. Chen, Z. Feng, T. Chen, Y. Lian, X. Wang, C. Li, J. Phys. Chem. C 111, 693–699 (2007)CrossRefGoogle Scholar
  33. 33.
    A. Strini, L. Schiavi, R. Zanoni, S. De Iuliis, R. Dondè, S. Maffi, F. Migliorini, J. Appl. Biomater Funct. Mater. 15(4), e408 (2017)Google Scholar
  34. 34.
    S. De Iuliis, M. Barbini, S. Benecchi, G. Zizak, Combust. Flame 115, 253–261 (1998)CrossRefGoogle Scholar
  35. 35.
    S. De Iuliis, S. Maffi, F. Cignoli, G. Zizak, Appl. Phys. B 102, 891–903 (2011)ADSGoogle Scholar
  36. 36.
    A. Saha, A. Moya, A. Kahnt, D. Iglesias, S. Marchesan, R. Vannemacher, M. Prato, J.J. Vilatela, D.M. Guldi, Nanoscale 9, 7911–7921 (2017)CrossRefGoogle Scholar
  37. 37.
    T.A. Sipkens, P.J. Hadwin, S.J. Grauer, K.J. Daun, Appl. Opt. 56, 8436–8445 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    S. Gordon, B.J. McBride, NASA Reference Publication 1311 (1996)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CNR-ICMATE, Institute of Condensed Matter Chemistry and Technologies for EnergyMilanItaly

Personalised recommendations