Advertisement

Applied Physics B

, 125:187 | Cite as

Full elimination of the gravity-gradient terms in atom interferometry

  • B. Dubetsky
Article
  • 21 Downloads

Abstract

The A. Roura technique was modified to eliminate all terms in the phase of the atom interferometer that are linear in the gravity-gradient tensor. Full elimination occurs when the wave vectors of all Raman pulses change slightly. The full elimination technique would allow to relieve synchronization requirements when testing the Einstein equivalence principle. This technique also eliminates the systematic error of the absolute measurement of the gravitational field, which is due to the gravitational gradient. The error becomes three orders less and does not depend on the delay time between Raman pulses. In addition, a new differential scheme is proposed to observe the gravity-gradient term, independent on the atomic initial position and velocity.

Notes

References

  1. 1.
    B.Ya. Dubetskii, A.P. Kazantsev, V.P. Chebotayev, V.P. Yakovlev, Interference of atoms and formation of atomic spatial arrays in light fields. Pis’ma Zh. Eksp. Teor. Fiz. 39, 531 (1984)Google Scholar
  2. 2.
    B.Ya. Dubetskii, A.P. Kazantsev, V.P. Chebotayev, V.P. Yakovlev, Interference of atoms and formation of atomic spatial arrays in light fields. JETP Lett. 39, 649 (1984)ADSGoogle Scholar
  3. 3.
    D.M. Greenberger, A.W. Overhauser, Coherence effects in neutron diffraction and gravity experiments. Rev. Mod. Phys. 51, 43 (1979)ADSCrossRefGoogle Scholar
  4. 4.
    M. Kasevich, S. Chu, Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67, 181 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    A. Peters, K.Y. Chung, S. Chu, Measurement of gravitational acceleration by dropping atoms. Nature 400, 849 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Z.-K. Hu, B.-L. Sun, X.-C. Duan, M.-K. Zhou, Le-Le Chen, Su Zhan, Q.-Z. Zhang, J. Luo, Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter. Phys. Rev. A 88, 043610 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    M.J. Snadden, J.M. McGuirk, P. Bouyer, K.G. Haritos, M.A. Kasevich, Measurement of the earth’s gravity gradient with an atom interferometer-based gravity gradiometer. Phys. Rev. Lett. 81, 971 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    J.B. Fixler, G.T. Foster, J.M. McGuirk, M.A. Kasevich, Atom interferometer measurement of the Newtonian constant of gravity. Science 315, 74 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, G.M. Tino, Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 510, 518 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    J. Audretsch, U. Bleyer, C. Lämmerzahl, Testing Lorentz invariance with atomic-beam interferometry. Phys. Rev. A 47, 4632 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    L. Viola, R. Onofrio, Testing the equivalence principle through freely falling quantum objects. Phys. Rev. D 55, 455 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    S. Fray, C.A. Diez, T.W. Hänsch, M. Weitz, Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle. Phys. Rev. Lett. 93, 240404 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    A. Roura, Circumventing Heisenberg’s uncertainty principle in atom interferometry tests of the equivalence principle. Phys. Rev. Lett. 118, 160401 (2017)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    B. Dubetsky, M.A. Kasevich, Atom interferometer as a selective sensor of rotation or gravity. Phys. Rev. A 74, 023615 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    K. Bongs, R. Launay, M.A. Kasevich, High-order inertial phase shifts for time-domain atom interferometers. Appl. Phys. B 84, 599 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    P. Wolf, P. Tourrence, Gravimetry using atom interferometers: some systematic effects. Phys. Lett. A 251, 241 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    C. Overstreet, P. Asenbaum, T. Kovachy, R. Notermans, J.M. Hogan, M.A. Kasevich, Effective inertial frame in an atom interferometric test of the equivalence principle. Phys. Rev. Lett. 120, 183604 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    G. D’Amico, G. Rosi, S. Zhan, L. Cacciapuoti, M. Fattori, G.M. Tino, Canceling the gravity gradient phase shift in atom interferometry. Phys. Rev. Lett. 119, 253201 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    B. Dubetsky, Comment on “Circumventing Heisenberg’s uncertainty principle in atom interferometry tests of the equivalence principle”. Phys. Rev. Lett. 121, 128903 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    A.M. Nobili, Fundamental limitations to high-precision tests of the universality of free fall by dropping atoms. Phys. Rev. A 93, 023617 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    S.M. Dickerson, J.M. Hogan, A. Sugarbaker, D.M.S. Johnson, M.A. Kasevich, Multi-axis inertial sensing with long-time point source atom interferometry. Phys. Rev. Lett. 111, 083001 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    A. Roura, Roura reply. Phys. Rev. Lett 121, 128904 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    A. Peters, K.Y. Chung, S. Chu, High-precision gravity measurements using atom interferometry. Metrologia 38, 25 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    M. Schmidt, A mobile high-precision gravimeter based on atom interferometry, Mathematisch-Naturwissenschaftlichen Fakultät Ider Humboldt-Universität zu Berlin, Thesis (2011), p. 109Google Scholar
  25. 25.
    T. Kovachy, Applications of macroscopic matter-wave interferometers: gravity gradiometry and testing the equivalence principle. In: Proceedings of the 2016 JQI Workshop on Matter-Wave Interferometry. https://sites.google.com/site/2016mwave
  26. 26.
    B. Dubetsky, Asymmetric Mach–Zehnder atom interferometers. arXiv:1710.00020v5 [physics.atom-ph]
  27. 27.
    M.A. Kasevich, B. Dubetsky, Kinematic sensors employing atom interferometer phases. US Patent 7,317,184 (2005)Google Scholar
  28. 28.
    R.G. Beausoleil, T.W. Hänsch, Ultra-high resolution two-photon optical Ramsey spectroscopy of an atomic fountain. Phys. Rev. A 33, 1661 (1986)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hallandale BeachUSA

Personalised recommendations