Applied Physics B

, 125:181 | Cite as

Particle size and concentration effect on thermal diffusivity of water-based ZnO nanofluid using the dual-beam thermal lens technique

  • M. Ramya
  • T. K. Nideep
  • V. P. N. Nampoori
  • M. KailasnathEmail author


In the present work, we experimentally investigate the size and concentration dependence of the thermal diffusivity of water-based ZnO nanofluid. The results show an increase in thermal diffusivity both by increasing the particle size from 5.6 to 16.6 nm as well as nanoparticle concentration in the range 0.02–0.1 mg/ml. It was also observed that there is a 4% enhancement in thermal diffusivity of the nanofluid for an optimum value of nanoparticle size and concentration. The dependence of thermal diffusivity on the particle size and concentration can give a great insight into the inter-particle interaction and the aggregation dynamics in nanofluid.



Authors acknowledge Science and Engineering Research Board (SERB) Grant no. EEQ/2018/000468, Cochin University of Science and Technology, for the financial assistance.


  1. 1.
    A. Gupta, R. Kumar, Role of Brownian motion on the thermal conductivity enhancement of nanofluids. Appl. Phys. Lett. 223102, 2010–2013 (2011). CrossRefGoogle Scholar
  2. 2.
    S.M.S. Murshed, C.A.N. De Castro, Superior thermal features of carbon nanotubes-based nano fluids—a review. Renew. Sustain. Energy Rev. 37, 155–167 (2014). CrossRefGoogle Scholar
  3. 3.
    E.M. Languri, J. Davidson, K. Nawaz, W. Johnson, F. Mashali, D. Kerns, G. Cunningham, Thermo-physical properties of diamond nanofluids: a review. Int. J. Heat Mass Transf. 129, 1123–1135 (2018). CrossRefGoogle Scholar
  4. 4.
    E.M. Cárdenas Contreras, G.A. Oliveira, E.P. Bandarra Filho, Experimental analysis of the thermohydraulic performance of graphene and silver nanofluids in automotive cooling systems. Int. J. Heat Mass Transf. 132, 375–387 (2019). CrossRefGoogle Scholar
  5. 5.
    R. Saidur, K.Y. Leong, H.A. Mohammad, A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15, 1646–1668 (2011). CrossRefGoogle Scholar
  6. 6.
    J. Sarkar, A critical review on convective heat transfer correlations of nanofluids. Renew. Sustain. Energy Rev. 15, 3271–3277 (2011). CrossRefGoogle Scholar
  7. 7.
    V. Trisaksri, S. Wongwises, Critical review of heat transfer characteristics of nanofluids. Renew. Sustain. Energy Rev. 11, 512–523 (2007). CrossRefGoogle Scholar
  8. 8.
    W.H. Azmi, K.V. Sharma, R. Mamat, G. Naja, M.S. Mohamad, The enhancement of effective thermal conductivity and effective dynamic viscosity of nano fluids—a review. Renew. Sustain. Energy Rev. 53, 1046–1058 (2016). CrossRefGoogle Scholar
  9. 9.
    S. Krishnamurthy, P. Bhattacharya, P.E. Phelan, Enhanced mass transport in nanofluids. Nano Lett. 6, 419–423 (2006). ADSCrossRefGoogle Scholar
  10. 10.
    D. Cabaleiro, L. Colla, F. Agresti, L. Lugo, L. Fedele, Transport properties and heat transfer coefficients of ZnO/(ethylene glycol + water) nanofluids. Int. J. Heat Mass Transf. 89, 433–443 (2015). CrossRefGoogle Scholar
  11. 11.
    M. Kahani, R.G. Jackson, G. Rosengarten, Experimental investigation of TiO2/water nano fluid droplet impingement on nanostructured surfaces. IEC Res. (2016). CrossRefGoogle Scholar
  12. 12.
    A. Ijam, R. Saidur, P. Ganesan, A. Moradi Golsheikh, Stability, thermo-physical properties, and electrical conductivity of graphene oxide-deionized water/ethylene glycol based nanofluid. Int. J. Heat Mass Transf. 87, 92–103 (2015). CrossRefGoogle Scholar
  13. 13.
    X. Wang, A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46, 1–19 (2007). CrossRefGoogle Scholar
  14. 14.
    S. Simpson, A. Schelfhout, C. Golden, S. Vafaei, Nanofluid thermal conductivity and effective parameters. Appl. Sci. (2018). CrossRefGoogle Scholar
  15. 15.
    M. Hari, S. Ani, S. Mathew, B. Nithyaja, V.P.N. Nampoori, P. Radhakrishnan, Thermal diffusivity of nano fluids composed of rod-shaped silver nanoparticles. Int. J. Therm. Sci. 64, 188–194 (2013). CrossRefGoogle Scholar
  16. 16.
    L. Yang, K. Du, A comprehensive review on heat transfer characteristics of TiO2 nanofluids. Int. J. Heat Mass Transf. 108, 11–31 (2017). CrossRefGoogle Scholar
  17. 17.
    P. Taylor, W. Yu, D.M. France, J.L. Routbort, S.U.S. Choi, Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf. Eng. (2008). CrossRefGoogle Scholar
  18. 18.
    W. Yu, H. Xie, A review on nanofluids: preparation, stability mechanisms, and applications. J. Nanomater. (2012). CrossRefGoogle Scholar
  19. 19.
    S. Mukherjee, P.C. Mishra, P. Caudhuri, Stability of heat transfer nanofluids—a review. ChemBioEng. (2018). CrossRefGoogle Scholar
  20. 20.
    E.V. Timofeeva, J.L. Routbort, D. Singh, E.V. Timofeeva, J.L. Routbort, D. Singh, Particle shape effects on thermophysical properties of alumina nanofluids. J. Appl. Phys. (2009). CrossRefGoogle Scholar
  21. 21.
    M. Hossein, A. Mirlohi, M. Alhuyi, R. Ghasempour, A review of thermal conductivity of various nano fluids. J. Mol. Liq. 265, 181–188 (2018). CrossRefGoogle Scholar
  22. 22.
    N. Sizochenko, M. Syzochenko, A. Gajewicz, J. Leszczynski, T. Puzyn, Predicting physical properties of nano fluids by computational modeling. J. Phys. Chem. C 121, 1910–1917 (2016). CrossRefGoogle Scholar
  23. 23.
    M.I. Pryazhnikov, A.V. Minakov, V.Y. Rudyak, D.V. Guzei, Thermal conductivity measurements of nanofluids. Int. J. Heat Mass Transf. 104, 1275–1282 (2017). CrossRefGoogle Scholar
  24. 24.
    W. Yu, H. Xie, L. Chen, Y. Li, Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. Thermochim. Acta 491, 92–96 (2009). CrossRefGoogle Scholar
  25. 25.
    G. Huminic, A. Huminic, Application of nanofluids in heat exchangers: a review. Renew. Sustain. Energy Rev. 16, 5625–5638 (2012). CrossRefzbMATHGoogle Scholar
  26. 26.
    H.A. Badran, Thermal properties of a new dye compound measured by thermal lens effect and Z-scan technique. Appl. Phys. B. (2015). CrossRefGoogle Scholar
  27. 27.
    H. Li, Y. He, Y. Hu, B. Jiang, Y. Huang, Thermophysical and natural convection characteristics of ethylene glycol and water mixture based ZnO nanofluids. Int. J. Heat Mass Transf. 91, 385–389 (2015). CrossRefGoogle Scholar
  28. 28.
    V. Mikkola, S. Puupponen, H. Granbohm, K. Saari, A. Seppälä, Influence of particle properties on convective heat transfer of nano fluids. Int. J. Therm. Sci. 124, 187–195 (2018). CrossRefGoogle Scholar
  29. 29.
    A.A. Nadooshan, An experimental correlation approach for predicting thermal conductivity of water-EG based nanofluids of zinc oxide. Phys. E Low Dimens. Syst. Nanostruct. 87, 15–19 (2017). ADSCrossRefGoogle Scholar
  30. 30.
    J.R.V. Peñas, J.M.O. De Zárate, M. Khayet, Measurement of the thermal conductivity of nanofluids by the multicurrent hot-wire method. J. Appl. Phys. 104, 1–8 (2008). CrossRefGoogle Scholar
  31. 31.
    C. Kleinstreuer, Y. Feng, Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res. Lett. 6, 1–13 (2011)Google Scholar
  32. 32.
    G. Paul, M. Chopkar, I. Manna, P.K. Das, Techniques for measuring the thermal conductivity of nanofluids: a review. Renew. Sustain. Energy Rev. 14, 1913–1924 (2010). CrossRefGoogle Scholar
  33. 33.
    R. Choudhary, D. Khurana, A. Kumar, S. Subudhi, Stability analysis of Al2O3/water nanofluids. J. Exp. Nanosci. (2017). CrossRefGoogle Scholar
  34. 34.
    M.L.B.J.H. Rohlig, J. Mura, J.R.D. Pereira, A.J. Palangana, A.N. Medina, A.C. Bento, Thermal lens temperature scanning for quantitative measurements in complex fluids. Braz. J. Phys. 32, 575–583 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    A. Marcano, H. Cabrera, M. Guerra, R.A. Cruz, C. Jacinto, T. Catunda, Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement. J. Opt. Soc. Am. B. 23, 1408–1413 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    L.A. Skvortsov, Laser photothermal spectroscopy of light- induced absorption. Quantum Electron. 43, 1–13 (2017). ADSCrossRefGoogle Scholar
  37. 37.
    S. Instruments, N. Gorica, Analytical thermal lens instrumentation. Am. Inst. Phys. 67, 1–18 (1996). CrossRefGoogle Scholar
  38. 38.
    J.P. Gordon, R.C.C. Leite, R.S. Moore, S.P.S. Porto, J.R. Whinnery, Long transient effects in lasers with inserted liquid samples. J. Appl. Phys. (1965). CrossRefGoogle Scholar
  39. 39.
    S.J. Sheldon, L.V. Knight, J.M. Thorne, Laser-induced thermal lens effect: a new theoretical model. Appl. Opt. 21, 1663–1669 (1982)ADSCrossRefGoogle Scholar
  40. 40.
    R.D. Snook, R.D. Lowe, Thermal lens spectrometry. Analyst 120, 2051–2068 (1995)ADSCrossRefGoogle Scholar
  41. 41.
    A. Chemistry, S.N. Bendrysheva, M. Sciences, Advances in thermal lens spectrometry. J. Anal. Chem. (2015). CrossRefGoogle Scholar
  42. 42.
    R. Silva, M.A.C. De Araújo, P. Jali, S.G.C. Moreira, P.A. Jr, C. Paulo, R. Silva, M.A.C. De Ara, P. Jali, G.C. Sanclayton, Thermal lens spectrometry: optimizing amplitude and shortening the transient time. AIP Adv. (2011). CrossRefGoogle Scholar
  43. 43.
    S. Kumar, H. Lee, T. Yoon, C.N. Murthy, J. Lee, Morphological control over ZnO nanostructures from self-emulsion polymerization. Cryst. Growth Des. 117, 3905–3911 (2016). CrossRefGoogle Scholar
  44. 44.
    P. Rai, W. Kwak, Y. Yu, Solvothermal synthesis of ZnO nanostructures and their morphology-dependent gas-sensing properties. Appl. Mater. Interfaces 5, 3026–3032 (2013). CrossRefGoogle Scholar
  45. 45.
    Y. Zhang, J. Xu, Q. Xiang, H. Li, Q. Pan, P. Xu, Brush-like hierarchical ZnO nanostructures: synthesis, photoluminescence and gas sensor properties. J. Phys. Chem. C 113, 3430–3435 (2009)CrossRefGoogle Scholar
  46. 46.
    M. Raula, H. Rashid, T.K. Paira, E. Dinda, T.K. Mandal, Ascorbate-assisted growth of hierarchical ZnO nanostructures: sphere, spindle, and flower and their catalytic properties. Langmuir 26, 8769–8782 (2010). CrossRefGoogle Scholar
  47. 47.
    M. Ramya, T.K. Nideep, K.R. Vijesh, V.P.N. Nampoori, M. Kailasnath, Synthesis of stable ZnO nanocolloids with enhanced optical limiting properties via simple solution method. Opt. Mater. (Amst) 81, 30–36 (2018). ADSCrossRefGoogle Scholar
  48. 48.
    M. Andika, G. Chung, K. Chen, S. Vasudevan, Excitation temporal pulse shape and probe beam size effect on pulsed photothermal lens of single particle. Opt. Soc. Am. 27, 796–805 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    J. John, L. Thomas, B.R. Kumar, A. Kurian, Shape dependent heat transport through green synthesized gold nanofluids. J. Phys. D. Appl. Phys. (2015). CrossRefGoogle Scholar
  50. 50.
    E. Shahriari, M. Moradi, M. Raeisi, An experimental study of thermal diffusivity of Au nanoparticles: effects of concentration particle size. J. Theor. Appl. Phys. 10, 259–263 (2016). ADSCrossRefGoogle Scholar
  51. 51.
    S. Ani, M. Hari, S. Mathew, G. Sharma, V.M. Hadiya, P. Radhakrishnan, V.P.N. Nampoori, Thermal diffusivity of rhodamine 6G incorporated in silver nanofluid measured using mode-matched thermal lens technique. Opt. Commun. 283, 313–317 (2010). ADSCrossRefGoogle Scholar
  52. 52.
    J.R. Whinnery, Laser measurement of optical absorption in liquids. Acc. Chem. Res. 7, 225–231 (1974)CrossRefGoogle Scholar
  53. 53.
    R. Herrera-aquino, Green synthesis of silver nanoparticles contained in centrifuged citrus oil and their thermal diffusivity. Int. J. Thermophys. 123, 1–10 (2019). CrossRefGoogle Scholar
  54. 54.
    E. Shahriari, The effect of nanoparticle size on thermal diffusivity of gold nano-fluid measured using thermal lens technique. JEOS Rapid Publ 13026, 1–4 (2013)Google Scholar
  55. 55.
    A. Viswanathan, S. Udayan, P.N. Mus, V.P.N. Nampoori, S. Thomas, Enhancement of defect states assisted thermal diffusivity in solution-processed GeSeSb chalcogenide glass matrix on silver incorporation. J. Non Cryst. Solids (2018). CrossRefGoogle Scholar
  56. 56.
    X. Liu, X. Xing, Y. Li, N. Chen, I. Djerdj, Y. Wang, Controllable synthesis and change of emission color from green to orange of ZnO quantum dots using different solvents. New J. Chem. 39, 2881–2888 (2015). CrossRefGoogle Scholar
  57. 57.
    G.A. López-muñoz, J.A. Balderas-lópez, J. Ortega-lopez, J.A. Pescador-rojas, J.S. Salazar, Thermal diffusivity measurement for urchin-like gold nanofluids with different solvents, sizes and concentrations/shapes. Nanoscale Res. Lett. 667, 1–7 (2012)Google Scholar
  58. 58.
    V.M. Lenart, N.G.C. Astrath, R.F. Turchiello, G.F. Goya, Thermal diffusivity of ferrofluids as a function of particle size determined using the mode-mismatched dual-beam thermal lens technique. J. Appl. Phys. 123, 085107 (2018). ADSCrossRefGoogle Scholar
  59. 59.
    P.D. Shima, J. Philip, B. Raj, P.D. Shima, J. Philip, B. Raj, Role of microconvection induced by Brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Appl. Phys. Lett. 94, 223101 (2009). ADSCrossRefGoogle Scholar
  60. 60.
    N. Ali, J.A. Teixeira, A. Addali, A review on nanofluids: fabrication, stability, and thermophysical properties. J. Nanomater. 2018, 1–33 (2018)Google Scholar
  61. 61.
    F. Yu, Y. Chen, X. Liang, J. Xu, C. Lee, Q. Liang, P. Tao, Progress in natural science: materials international dispersion stability of thermal nano fl uids. Prog. Nat. Sci. Mater. Int. 27, 531–542 (2017). CrossRefGoogle Scholar
  62. 62.
    J. John, R. Mary, I. Rejeena, R. Jayakrishnan, S. Mathew, V. Thomas, A. Mujeeb, Nonlinear optical limiting and dual beam mode matched thermal lensing of nano fluids containing green synthesized copper nanoparticles. J. Mol. Liq. 279, 63–66 (2019). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. Ramya
    • 1
  • T. K. Nideep
    • 1
  • V. P. N. Nampoori
    • 1
  • M. Kailasnath
    • 1
    Email author
  1. 1.International School of PhotonicsCochin University of Science and TechnologyKochiIndia

Personalised recommendations