Advertisement

Applied Physics B

, 125:176 | Cite as

Soot aggregate sizing in an extended premixed flame by high-resolution two-dimensional multi-angle light scattering (2D-MALS)

  • Michael Altenhoff
  • Simon Aßmann
  • Julian F. A. Perlitz
  • Franz J. T. Huber
  • Stefan WillEmail author
Article
  • 79 Downloads
Part of the following topical collections:
  1. Laser-Induced Incandescence

Abstract

The spatial distribution of soot aggregate size and morphology within a premixed flat flame (McKenna-type burner and ethyne–air mixture at an equivalence ratio of Φ = 2.7) is characterized by two-dimensional multi-angle light scattering (2D-MALS). A profound investigation of such an extended, radially symmetrical sooting flame with 2D-MALS requires a sophisticated camera calibration to correct for non-linear image scaling and a careful evaluation of the scattering data. Sharp scattering images were acquired in the angular range from 20° to 155° using a rotatable camera system and an automated Scheimpflug adapter. To correct for non-linear variations in horizontal and vertical image magnification occurring at scattering angles differing from perpendicular view, a polynomial-based image transformation algorithm was developed to convert all scattering images into a common coordinate system. Effective radii of gyration and fractal dimensions of soot aggregates were then derived from scattering data by two different approaches. Due to limited amount of angular positions, the classical method based on Guinier and power law analysis shows limitations, as it yields discontinuous results, predominantly in axial direction of the burner. Bayesian analysis was then used for a data fit of the complete structure factor conducting a least square minimization leading to more consistent results. The use of prior knowledge in the Bayesian evaluation allows for improved data fitting and reduced uncertainties in radius of gyration and fractal dimension even for small aggregate sizes.

Notes

Acknowledgements

The authors gratefully acknowledge funding by the German Research Foundation (DFG) under Grant no. WI 1602/6-1. We thank Rolf Eigenheer and Charlie Gfeller of GFAE GmbH Switzerland for their operating assistance and hardware improvements of the CAPcam Scheimpflug adapter. We are grateful to Julia Kufner, Robert Müller, Andreas Knerr, and Nicolas Fechter for their help concerning the ELS measurements and evaluation strategies.

References

  1. 1.
    E.J. Highwood, R.P. Kinnersley, Environ. Int. 32, 560–566 (2006)CrossRefGoogle Scholar
  2. 2.
    K.-H. Kim, S.A. Jahan, E. Kabir, R.J.C. Brown, Environ. Int. 60, 71–80 (2013)CrossRefGoogle Scholar
  3. 3.
    M. Lippmann, Crit. Rev. Toxicol. 44, 299–347 (2014)CrossRefGoogle Scholar
  4. 4.
    T.C. Bond, S.J. Doherty, D.W. Fahey, P.M. Forster, T. Berntsen, B.J. DeAngelo et al., J Geophys Res D 118, 5380–5552 (2013)ADSGoogle Scholar
  5. 5.
    V. Ramanathan, G. Carmichael, Nat. Geosci. 1, 221–227 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    J. Hansen, L. Nazarenko, Proc. Natl. Acad. Sci. USA. 101, 423–428 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    M. Frenklach, PCCP 4, 2028–2037 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    R.J. Pugmire, S. Yan, M.S. Solum, Y.J. Jiang, A.F. Sarofim. 9th International Congress on combustion by-products and their health effects (2005)Google Scholar
  9. 9.
    H.A. Michelsen, Proc. Combust. Inst. 36, 717–735 (2017)CrossRefGoogle Scholar
  10. 10.
    H. Richter, J.B. Howard, Prog. Energy Combust. Sci. 26, 565–608 (2000)CrossRefGoogle Scholar
  11. 11.
    H. Wang, Proc. Combust. Inst. 33, 41–67 (2011)CrossRefGoogle Scholar
  12. 12.
    S.R. Forrest, T.A. Witten, J. Phys. A Math. Gen. 12, L109–L117 (1979)ADSCrossRefGoogle Scholar
  13. 13.
    R.A. Dobbins, C.M. Megaridis, Langmuir 3, 254–259 (1987)CrossRefGoogle Scholar
  14. 14.
    Ü.Ö. Köylü, Y. Xing, D.E. Rosner, Langmuir 11, 4848–4854 (1995)CrossRefGoogle Scholar
  15. 15.
    R.J. Samson, G.W. Mulholland, J.W. Gentry, Langmuir 3, 272–281 (1987)CrossRefGoogle Scholar
  16. 16.
    A.M. Brasil, T.L. Farias, M.G. Carvalho, J. Aerosol Sci. 30, 1379–1389 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    C. Oh, C.M. Sorensen, J. Aerosol Sci. 28, 937–957 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    C.M. Sorensen, Aerosol Sci. Technol. 35, 648–687 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    M. Wozniak, F.R.A. Onofri, S. Barbosa, J. Yon, J. Mroczka, J. Aerosol Sci. 47, 12–26 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    F.J.T. Huber, S. Will, K.J. Daun, J. Quant. Spectrosc. Radiat. Transf. 184, 27–39 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    M. Altenhoff, C. Teige, M. Storch, S. Will, Rev. Sci. Instrum. 87, 125108 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    A.M. Vargas, Ö.L. Gülder, Rev. Sci. Instrum. 87, 055101 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    P.-J. De Temmerman, E. Verleysen, J. Lammertyn, J. Mast, Powder Technol. 261, 191–200 (2014)CrossRefGoogle Scholar
  24. 24.
    S.C. Wang, R.C. Flagan, Aerosol Sci. Technol. 13, 230–240 (1990)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Endo, N. Fukushima, S. Tashiro, Y. Kousaka, Aerosol Sci. Technol. 26, 43–50 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    K. Ehara, C. Hagwood, K.J. Coakley, J. Aerosol Sci. 27, 217–234 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    K. Park, F. Cao, D.B. Kittelson, P.H. McMurry, Environ. Sci. Technol. 37, 577–583 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    M.M. Maricq, S.J. Harris, J.J. Szente, Combust. Flame 132, 328–342 (2003)CrossRefGoogle Scholar
  29. 29.
    J.E. Brockmann, Aerosol transport in sampling lines and inlets (Wiley, Hoboken, 2011)CrossRefGoogle Scholar
  30. 30.
    C. Saggese, A. Cuoci, A. Frassoldati, S. Ferrario, J. Camacho, H. Wang et al., Combust. Flame 167, 184–197 (2016)CrossRefGoogle Scholar
  31. 31.
    C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie et al., Appl. Phys. B 83, 333–354 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    H.A. Michelsen, C. Schulz, G.J. Smallwood, S. Will, Prog. Energy Combust. Sci. 51, 2–48 (2015)CrossRefGoogle Scholar
  33. 33.
    H. Geitlinger, T. Streibel, R. Suntz, H. Bockhorn. Symposium (International) on Combustion, vol. 27 (1998), pp. 1613–21Google Scholar
  34. 34.
    S. Gangopadhyay, I. Elminyawi, C.M. Sorensen, Appl. Opt. 30, 4859–4864 (1991)ADSCrossRefGoogle Scholar
  35. 35.
    Ü.Ö. Köylü, G.M. Faeth, J. Heat Transf. 116, 152–159 (1994)CrossRefGoogle Scholar
  36. 36.
    Ü.Ö. Köylü, G.M. Faeth, J. Heat Transf. 116, 971–979 (1994)CrossRefGoogle Scholar
  37. 37.
    C.M. Sorensen, J. Cai, N. Lu, Langmuir 8, 2064–2069 (1992)CrossRefGoogle Scholar
  38. 38.
    O. Link, D.R. Snelling, K.A. Thomson, G.J. Smallwood, Proc. Combust. Inst. 33, 847–854 (2011)CrossRefGoogle Scholar
  39. 39.
    R.J. Santoro, H.G. Semerjian, R.A. Dobbins, Combust. Flame 51, 203–218 (1983)CrossRefGoogle Scholar
  40. 40.
    P. Hull, I. Shepherd, A. Hunt, Appl. Opt. 43, 3433–3441 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    S. De Iuliis, F. Cignolia, S. Benecchi, G. Zizak, Proc. Combust. Inst. 27, 1549–1555 (1998)CrossRefGoogle Scholar
  42. 42.
    H.R. Haller, C. Destor, D.S. Cannell, Rev. Sci. Instrum. 54, 973–983 (1983)ADSCrossRefGoogle Scholar
  43. 43.
    H. Oltmann, J. Reimann, S. Will, Combust. Flame 157, 516–522 (2010)CrossRefGoogle Scholar
  44. 44.
    H. Oltmann, J. Reimann, S. Will, Appl. Phys. B 106, 171–183 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    F.J.T. Huber, M. Altenhoff, S. Will, Rev. Sci. Instrum. 87, 053102 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    M. Bouvier, J. Yon, G. Lefevre, F. Grisch, J. Quant. Spectrosc. Radiat. Transf. 225, 58–68 (2019)ADSCrossRefGoogle Scholar
  47. 47.
    F.J.T. Huber, S. Will, J. Aerosol Sci. 119, 62–76 (2018)ADSCrossRefGoogle Scholar
  48. 48.
    S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2342–2344 (1995)ADSCrossRefGoogle Scholar
  49. 49.
    S. Will, S. Schraml, A. Leipertz, Proc. Combust. Inst. 26, 2277–2284 (1996)CrossRefGoogle Scholar
  50. 50.
    J. Reimann, S.A. Kuhlmann, S. Will, Appl. Phys. B 96, 583–592 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    B. Ma, M.B. Long, Appl. Phys. B 117, 287–303 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    N.J. Kempema, M.B. Long, Combust. Flame 164, 373–385 (2016)CrossRefGoogle Scholar
  53. 53.
    A.R. Jones, Light Scattering in Combustion (Springer, Berlin, 2006)CrossRefGoogle Scholar
  54. 54.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)Google Scholar
  55. 55.
    C.M. Sorensen, N. Lu, J. Cai, J. Colloid Interface Sci. 174, 456–460 (1995)ADSCrossRefGoogle Scholar
  56. 56.
    M.Y. Lin, R. Klein, H.M. Lindsay, D.A. Weitz, R.C. Ball, P. Meakin, J. Colloid Interface Sci. 137, 263–280 (1990)ADSCrossRefGoogle Scholar
  57. 57.
    U. von Toussaint, Rev. Mod. Phys. 83, 943–999 (2011)ADSCrossRefGoogle Scholar
  58. 58.
    D.W. Burr, K.J. Daun, O. Link, K.A. Thomson, G.J. Smallwood, J. Quant. Spectrosc. Radiat. Transf. 112, 1099–1107 (2011)ADSCrossRefGoogle Scholar
  59. 59.
    J. Kaipio, E. Somersalo, Statistical and Computational Inverse Problems (Springer, New York, 2006)zbMATHGoogle Scholar
  60. 60.
    F. Migliorini, S. De Iuliis, F. Cignoli, G. Zizak, Combust. Flame 153, 384–393 (2008)CrossRefGoogle Scholar
  61. 61.
    R. Stirn, T.G. Baquet, S. Kanjarkar, W. Meier, K.P. Geigle, H.H. Grotheer et al., Combust. Sci. Technol. 181, 329–349 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Lehrstuhl für Technische Thermodynamik (LTT)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  2. 2.Erlangen Graduate School in Advanced Optical Technologies (SAOT)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany
  3. 3.Cluster of Excellence Engineering of Advanced Materials (EAM)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenGermany

Personalised recommendations