Applied Physics B

, 125:165 | Cite as

Focusing and self-healing characteristics of Airy array beams propagating in self-focusing media

  • Li Wang
  • Xiaoling JiEmail author
  • Xiaoqing Li
  • Tao Wang
  • Hong Yu
  • Qiang Li


The focusing and self-healing characteristics of Airy array beams propagating in self-focusing media are studied numerically. When the Kerr effect is strong enough, an Airy array beam may focus twice for the coherent combination, while an Airy array beam may not focus for the incoherent combination. These behaviors are quite different from those without Kerr effect. With and without Kerr effect, the self-healing of Airy array beams with main lobes blocked can be achieved. Furthermore, a better reconstruction for the incoherent combination case can be achieved than that for the coherent combination case. The propagation distance required for the reconstruction of Airy array beams with main lobes blocked decreases due to the Kerr effect. The reconstruction of an Airy array beam with main lobes blocked may complete before or after focusing, which depends on the intensity distribution and the coherence of the array beam and is independent of the Kerr effect.



This work was supported by the National Natural Science Foundation of China (NSFC) under Grant no. 61775152.


  1. 1.
    M.V. Berry, N.L. Balazs, Nonspreading wave packets. Am. J. Phys. 47(3), 264–267 (1979)ADSCrossRefGoogle Scholar
  2. 2.
    G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Observation of accelerating Airy beams. Phys. Rev. Lett. 99, 213901 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, X. Zhang, Plasmonic Airy beams with dynamically controlled trajectories. Opt. Lett. 36(16), 3191–3193 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    I. Kaminer, R. Bekenstein, J. Nemirovsky, M. Segev, Nondiffracting accelerating wave packets of Maxwell’s equations. Phys. Rev. Lett. 108, 163901 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    J. Broky, G.A. Siviloglou, A. Dogariu, D.N. Christodoulides, Self-healing properties of optical Airy beams. Opt. Express 16(17), 12880–12891 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    X.X. Chu, G.Q. Zhou, R.P. Chen, Analytical study of the self-healing property of Airy beams. Phys. Rev. A 85, 013815 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    X. Ji, H. Eyyuboğlu, G. Ji, X. Jia, Propagation of an Airy beam through the atmosphere. Opt. Express 21(2), 2154–2164 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Q. Kong, N. Wei, C.Z. Fan, J.L. Shi, M. Shen, Suppression of collapse for two-dimensional Airy beam in nonlocal nonlinear media. Sci. Rep. 7, 4198 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Y.X. Qian, D.H. Li, H.X. Mao, Propagation dynamics of generalized and symmetric Airy beams. J. Opt. Soc. Am. A 34(3), 314–320 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    C.Y. Hwang, D. Choi, K.Y. Kim, B. Lee, Dual Airy beam. Opt. Express 18(22), 23504–23516 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Y.L. Gu, G. Gbur, Scintillation of Airy beam arrays in atmospheric turbulence. Opt. Lett. 35(20), 3456–3458 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    H.T. Eyyuboğlu, Scintillation behavior of Airy beam. Opt. Laser Technol. 47, 232–236 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Z.J. Ren, Q. Wu, Y.L. Shi, C. Chen, J.M. Wu, H. Wang, Production of accelerating quad Airy beams and their optical characteristics. Opt. Express 22(12), 15154–15164 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    C.Y. Chen, H.M. Yang, M. Kavehrad, Z. Zhou, Propagation of radial Airy array beams through atmospheric turbulence. Opt. Lasers Eng. 52, 106–114 (2014)CrossRefGoogle Scholar
  15. 15.
    A.M. Rubenchik, M.P. Fedoruk, S.K. Turitsyn, Laser Beam Self-Focusing in the Atmosphere. Phys. Rev. Lett. 102, 233902 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    M. Asobe, T. Kanamori, K. Naganuma, H. Itoh, T. Kaino, Third-order nonlinear spectroscopy in AS& chalcogenide glass fibers. J. Appl. Phys. 77, 5518 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    A. Zakery, S.R. Elliott, Optical properties and applications of chalcogenide glasses: a review. J. Noncryst. Solids 330, 1–12 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    K. Ogusu, K. Shinkawa, Optical nonlinearities in As2Se3 chalcogenide glasses doped with Cu and Ag for pulse durations on the order of nanoseconds. Opt. Express 17(10), 8165 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Hu, S. Huang, P. Zhang, C. Lou, J. Xu, Z. Chen, Persistence and breakdown of Airy beams driven by an initial nonlinearity. Opt. Lett. 35, 3952–3954 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    H.L. Deng, X.L. Ji, X.Q. Li, X.Q. Wang, Effect of spherical aberration on laser beam self-focusing in the atmosphere. Opt. Lett. 40(16), 3881–3884 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    W. Wen, X.X. Chu, Propagation of symmetric tunable dual airy beam through ABCD optical system. Opt. Commun. 333, 38–44 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    G.P. Agrawal, Nonlinear fiber optics, Chap 2, vol. II (Academic Press, Cambridge, 1995)Google Scholar
  23. 23.
    L. Wang, X.L. Ji, X.Q. Li, Y. Deng, T. Wang, X.L. Fan, H. Yu, Self-focusing effect on the characteristics of Airy beams. Opt. Commun. 441, 190–194 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Li Wang
    • 1
  • Xiaoling Ji
    • 1
    Email author
  • Xiaoqing Li
    • 1
  • Tao Wang
    • 1
  • Hong Yu
    • 2
  • Qiang Li
    • 2
  1. 1.Department of PhysicsSichuan Normal UniversityChengduChina
  2. 2.System Design Institute of Hubei Aerospace Technology AcademyWuhanChina

Personalised recommendations