Advertisement

Applied Physics B

, 125:163 | Cite as

Crystal structure, spectroscopic analyses, linear and third-order nonlinear optical properties of anthracene-based chalcone derivative for visible laser protection

  • Parutagouda Shankaragouda PatilEmail author
  • Shivaraj R. Maidur
  • Jitendra R. Jahagirdar
  • Tze Shyang Chia
  • Ching Kheng Quah
  • Mohd Shkir
Article
  • 33 Downloads

Abstract

Chalcone derivatives have fascinated the growing attention due to their nonlinear optical (NLO) and optical limiting (OL) properties. In the present study, a simple anthracene-based chalcone, (E)-1-(9-anthryl)-3-(4-nitrophenyl)prop-2-en-1-one (abbreviated as N-ANC), was synthesized as a new NLO material. Single-crystal X-ray diffraction, TGA/DTA, NMR (1H & 13C), FT-IR and UV–Vis–NIR spectroscopies, and DFT studies were performed. The intermolecular interactions were described by Hirshfeld surface analysis (HSA). In addition, static dipole moment (µ), and polarizability (α) were also computed by DFT calculations. Experimentally, the third-order NLO properties of N-ANC were investigated in solutions for two concentrations (1 and 5 mM) by Z-scan technique. Closed aperture Z-scan reveals that N-ANC possesses negative type of nonlinearity (self defocusing) with nonlinear refractive index n2 ~ 10−8 cm2W−1. In open aperture Z-scan, N-ANC exhibits strong two-photon absorption (TPA) with TPA coefficient β ~ 10−5 cmW−1. The evaluated one-photon and two-photon figures of merit of N-ANC satisfy the conditions for all-optical switching applications. Moreover, optical limiting nature based on TPA was performed and limiting threshold was evaluated. The results show that N-ANC exhibits good limiting characteristics because of its strong reverse saturable absorption (RSA) response, and thus, it is a promising material for NLO devices.

Notes

Acknowledgements

Dr. P.S. Patil thank the Science and Engineering Research Board (SERB), Government of India, for Core Research Grant (EMR/2017/003632). CKQ and TSC thank the Malaysian Government and Universiti Sains Malaysia (USM) for Fundamental Research Grant Scheme (FRGS) (203/PFIZIK/6711563). Author M.Shkir would like to express his gratitude to King Khalid University, Saudi Arabia for providing administrative and technical support.

Additional Information

Crystallographic information file of N-ANC was deposited at the Cambridge Crystallographic Data Centre with CCDC deposition no. 1498306. This data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).

Supplementary material

340_2019_7275_MOESM1_ESM.docx (368 kb)
Supplementary material 1 (DOCX 368 kb)

References

  1. 1.
    B.-T. Yin, C.-Y. Yan, X.-M. Peng, S.-L. Zhang, S. Rasheed, R.-X. Geng, C.-H. Zhou, Synthesis and biological evaluation of α-triazolyl chalcones as a new type of potential antimicrobial agents and their interaction with calf thymus DNA and human serum albumin. Eur. J. Med. Chem. 71, 148–159 (2014)CrossRefGoogle Scholar
  2. 2.
    B. Kupcewicz, A.A. Jarzęcki, M. Małecka, U. Krajewska, M. Rozalski, Cytotoxic activity of substituted chalcones in terms of molecular electronic properties. Bioorg. Med. Chem. Lett. 24, 4260–4265 (2014)CrossRefGoogle Scholar
  3. 3.
    S. Shenvi, K. Kumar, K.S. Hatti, K. Rijesh, L. Diwakar, G.C. Reddy, Synthesis, anticancer and antioxidant activities of 2,4,5-trimethoxy chalcones and analogues from asaronaldehyde: structure–activity relationship. Eur. J. Med. Chem. 62, 435–442 (2013)CrossRefGoogle Scholar
  4. 4.
    R. Shivahare, V. Korthikunta, H. Chandasana, M.K. Suthar, P. Agnihotri, P. Vishwakarma, T.K. Chaitanya, P. Kancharla, T. Khaliq, S. Gupta, R.S. Bhatta, J.V. Pratap, J.K. Saxena, S. Gupta, N. Tadigoppula, Synthesis, structure-activity relationships, and biological studies of chromenochalcones as potential antileishmanial agents. J. Med. Chem. 57, 3342–3357 (2014)CrossRefGoogle Scholar
  5. 5.
    Z. Wan, D. Hu, P. Li, D. Xie, X. Gan, Synthesis, antiviral bioactivity of novel 4-thioquinazoline derivatives containing chalcone moiety. Molecules 20, 11861–11874 (2015)CrossRefGoogle Scholar
  6. 6.
    B.P. Bandgar, S.S. Gawande, R.G. Bodade, J.V. Totre, C.N. Khobragade, Synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents. Bioorg. Med. Chem. 18, 1364–1370 (2010)CrossRefGoogle Scholar
  7. 7.
    Z. Rozmer, P. Perjési, Naturally occurring chalcones and their biological activities. Phytochem. Rev. 15, 87–120 (2014)CrossRefGoogle Scholar
  8. 8.
    P. Singh, A. Anand, V. Kumar, Recent developments in biological activities of chalcones: a mini review. Eur. J. Med. Chem. 85, 758–777 (2014)CrossRefGoogle Scholar
  9. 9.
    B. Orlikova, D. Tasdemir, F. Golais, M. Dicato, M. Diederich, Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr. 6, 125–147 (2011)CrossRefGoogle Scholar
  10. 10.
    Z. Nowakowska, A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem. 42, 125–137 (2007)CrossRefGoogle Scholar
  11. 11.
    Y. Goto, A. Hayashi, Y. Kimura, M. Nakayama, Second harmonic generation and crystal growth of substituted thienyl chalcone. J. Cryst. Growth 108, 688–698 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    J. Chen, X. Wang, Q. Ren, P.S. Patil, T. Li, H. Yang, J. Zhang, G. Li, L. Zhu, Investigation of third-order nonlinear optical properties of NNDC-doped PMMA thin films by Z-scan technique. Appl. Phys. A 105, 723–731 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    A. Ekbote, P.S. Patil, S.R. Maidur, T.S. Chia, C.K. Quah, Structural, third-order optical nonlinearities and figures of merit of (E)-1-(3-substituted phenyl)-3-(4-fluorophenyl) prop-2-en-1-one under CW regime: new chalcone derivatives for optical limiting applications. Dyes Pigm. 139, 720–729 (2017)CrossRefGoogle Scholar
  14. 14.
    L. Joseph, D. Sajan, V. Shettigar, K. Chaitanya, N. Misra, T. Sundius, I. Němec, Synthesis, crystal growth, thermal studies and scaled quantum chemical studies of structural and vibrational spectra of the highly efficient organic NLO crystal: 1-(4-Aminophenyl)-3-(3,4-dimethoxyphenyl)-prop-2-en-1-one. Mater. Chem. Phys. 141, 248–262 (2013)CrossRefGoogle Scholar
  15. 15.
    M.N. Arshad, A.-A.M. Al-Dies, A.M. Asiri, M. Khalid, A.S. Birinji, K.A. Al-Amry, A.A.C. Braga, Synthesis, crystal structures, spectroscopic and nonlinear optical properties of chalcone derivatives: a combined experimental and theoretical study. J. Mol. Struct. 1141, 142–156 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    L.R. Almeida, M.M. Anjos, G.C. Ribeiro, C. Valverde, D.F.S. Machado, G.R. Oliveira, H.B. Napolitano, H.C.B. de Oliveira, Synthesis, structural characterization and computational study of a novel amino chalcone: a potential nonlinear optical material. New J. Chem. 41, 1744–1754 (2017)CrossRefGoogle Scholar
  17. 17.
    L.M.G. Abegão, R.D. Fonseca, F.A. Santos, G.B. Souza, A.L.B.S. Barreiros, M.L. Barreiros, M.A.R.C. Alencar, C.R. Mendonça, D.L. Silva, L. De Boni, J.J. Rodrigues, Second- and third-order nonlinear optical properties of unsubstituted and mono-substituted chalcones. Chem. Phys. Lett. 648, 91–96 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    B. Zhao, W.Q. Lu, Z.H. Zhou, Y. Wu, The important role of the bromo group in improving the properties of organic nonlinear optical materials. J. Mater. Chem. 10, 1513–1517 (2000)CrossRefGoogle Scholar
  19. 19.
    C.S. Chidan Kumar, S. Raghavendra, T.S. Chia, S. Chandraju, S.M. Dharmaprakash, H.-K. Fun, C.K. Quah, Structure–property relation and third order nonlinear optical absorption study of a new organic crystal: 1-(3,4-Dimethoxyphenyl)-3-(2-fluorophenyl) prop-2-en-1-one. Opt. Mater. 49, 279–285 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    J. Tan, Y. Zhang, M. Zhang, X. Tian, Y. Wang, S. Li, C. Wang, H. Zhou, J. Yang, Y. Tian, J. Wu, Small molecules of chalcone derivatives with high two-photon absorption activities in the near-IR region. J. Mater. Chem. C 4, 3256–3267 (2016)CrossRefGoogle Scholar
  21. 21.
    S. Muhammad, A.G. Al-Sehemi, A. Irfan, A.R. Chaudhry, H. Gharni, S. AlFaify, M. Shkir, A.M. Asiri, The impact of position and number of methoxy group(s) to tune the nonlinear optical properties of chalcone derivatives: a dual substitution strategy. J. Mole. Model. 22 (2016)Google Scholar
  22. 22.
    D. Fichou, T. Watanabe, T. Takeda, S. Miyata, Y. Goto, M. Nakayama, Influence of the ring-substitution on the second harmonic generation of chalcone derivatives. Jpn. J. Appl. Phys. 27, L429–L430 (1988)ADSCrossRefGoogle Scholar
  23. 23.
    A.P. Menezes, A. Jayarama, Role of direction of charge transfer on the nonlinear optical behavior of pyridine substituted chalcone derivatives. J. Mol. Struct. 1075, 246–253 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    M. Sai Kiran, B. Anand, S. Siva Sankara Sai, G. Nageswara Rao, Second- and third-order nonlinear optical properties of bis-chalcone derivatives. J. Photochem. Photobiol. A Chem. 290, 38–42 (2014)CrossRefGoogle Scholar
  25. 25.
    S.R. Maidur, P.S. Patil, A. Ekbote, T.S. Chia, C.K. Quah, Molecular structure, second- and third-order nonlinear optical properties and DFT studies of a novel non-centrosymmetric chalcone derivative: (2E)-3-(4-fluorophenyl)-1-(4-{[(1E)-(4-fluorophenyl)methylene]amino}phenyl)prop-2-en-1-one. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 184, 342–354 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    S.R. Maidur, P.S. Patil, S.V. Rao, M. Shkir, S.M. Dharmaprakash, Experimental and computational studies on second-and third-order nonlinear optical properties of a novel D-π-A type chalcone derivative: 3-(4-methoxyphenyl)-1-(4-nitrophenyl) prop-2-en-1-one. Opt. Laser Technol. 97, 219–228 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    M. Shkir, P.S. Patil, M. Arora, S. AlFaify, H. Algarni, An experimental and theoretical study on a novel donor-π-acceptor bridge type 2, 4, 5-trimethoxy-4′-chlorochalcone for optoelectronic applications: a dual approach. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 173, 445–456 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    M. Shkir, S. Muhammad, S. AlFaify, A. Irfan, P.S. Patil, M. Arora, H. Algarni, Z. Jingping, An investigation on the key features of a D–π–A type novel chalcone derivative for opto-electronic applications. RSC Adv. 5, 87320–87332 (2015)CrossRefGoogle Scholar
  29. 29.
    R. Kumar, A. Kumar, V. Deval, A. Gupta, P. Tandon, P.S. Patil, P. Deshmukh, D. Chaturvedi, J.G. Watve, Molecular structure, spectroscopic (FT-IR, FT Raman, UV, NMR and THz) investigation and hyperpolarizability studies of 3-(2-Chloro-6-fluorophenyl)-1-(2-thienyl) prop-2-en-1-one. J. Mol. Struct. 1129, 292–304 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    J. Wu, C. Wang, Y. Cai, J. Peng, D. Liang, Y. Zhao, S. Yang, X. Li, X. Wu, G. Liang, Synthesis and crystal structure of chalcones as well as on cytotoxicity and antibacterial properties. Med. Chem. Res. 21, 444–452 (2011)CrossRefGoogle Scholar
  31. 31.
    Y.K. Rao, S.-H. Fang, Y.-M. Tzeng, Synthesis and biological evaluation of 3′,4′,5′-trimethoxychalcone analogues as inhibitors of nitric oxide production and tumor cell proliferation. Bioorg. Med. Chem. 17, 7909–7914 (2009)CrossRefGoogle Scholar
  32. 32.
    J. Tauc, Optical Properties and Electronic Structure of Amorphous Semiconductors, in: Optical Properties of Solids, (Springer US, 1969), pp. 123–136Google Scholar
  33. 33.
    S. Pramodini, P. Poornesh, Third-order nonlinear optical response of indigo carmine under 633 nm excitation for nonlinear optical applications. Opt. Laser Technol. 63, 114–119 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    S.R. Maidur, J.R. Jahagirdar, P.S. Patil, T.S. Chia, C.K. Quah, Structural characterizations, Hirshfeld surface analyses, and third-order nonlinear optical properties of two novel chalcone derivatives. Opt. Mater. 75, 580–594 (2018)ADSCrossRefGoogle Scholar
  35. 35.
    P.S. Patil, S.R. Maidur, S.V. Rao, S.M. Dharmaprakash, Crystalline perfection, third-order nonlinear optical properties and optical limiting studies of 3, 4-Dimethoxy -4′-methoxychalcone single crystal. Opt. Laser Technol. 81, 70–76 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    L.M. Saleh, H.A. Hassan, F.Z. Henari, P.S. Patil, M.S. Bannur, Nonlinear refractive and optical limiting measurements of 2-thienylchalcone derivatives under cw laser regime. Appl. Phys. A 116, 805–810 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    A. Ekbote, P.S. Patil, S.R. Maidur, T.S. Chia, C.K. Quah, Structure and nonlinear optical properties of (E)-1-(4-aminophenyl)-3-(3-chlorophenyl) prop-2-en-1-one: a promising new D-π-A-π-D type chalcone derivative crystal for nonlinear optical devices. J. Mol. Struct. 1129, 239–247 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    H.J. Ravindra, A. John Kiran, K. Chandrasekharan, H.D. Shashikala, S.M. Dharmaprakash, Third order nonlinear optical properties and optical limiting in donor/acceptor substituted 4′-methoxy chalcone derivatives. Applied Physics B 88, 105–110 (2007)CrossRefGoogle Scholar
  39. 39.
    H.A. Kurtz, J.J.P. Stewart, K.M. Dieter, Calculation of the nonlinear optical properties of molecules. J. Comput. Chem. 11, 82–87 (1990)CrossRefGoogle Scholar
  40. 40.
    G. Maroulis, Hyperpolarizability of H2O. J. Chem. Phys. 94, 1182–1190 (1991)ADSCrossRefGoogle Scholar
  41. 41.
    I. Fleming, Molecular orbitals and organic chemical reactions (Wiley, Hoboken, 2010)CrossRefGoogle Scholar
  42. 42.
    L. De Boni, C. Toro, A.E. Masunov, F.E. Hernández, Untangling the excited states of DR1 in solution: an experimental and theoretical study. J. Phys. Chem. A 112, 3886–3890 (2008)CrossRefGoogle Scholar
  43. 43.
    A.M. Köster, M. Leboeuf, D.R. Salahub, Molecular Electrostatic Potentials from Density Functional Theory, in: S.M. Jane, S. Kalidas (Eds.), Theoretical and Computational Chemistry, 3 (1996) 105-142Google Scholar
  44. 44.
    S.R. Maidur, P.S. Patil, A. Ekbote, T.S. Chia, C.K. Quah, Molecular structure, second-and third-order nonlinear optical properties and DFT studies of a novel non-centrosymmetric chalcone derivative:(2E)-3-(4-fluorophenyl)-1-(4-{[(1E)-(4-fluorophenyl) methylene] amino} phenyl) prop-2-en-1-one. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 184, 342–354 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    M.A. Spackman, D. Jayatilaka, Hirshfeld surface analysis. CrystEngComm 11, 19–32 (2009)CrossRefGoogle Scholar
  46. 46.
    M.A. Spackman, J.J. McKinnon, Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 4, 378–392 (2002)CrossRefGoogle Scholar
  47. 47.
    CrystalExplorer (Version 3.1), S.K. Wolff, D.J. Grimwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka, M.A. Spackman, University of Western Australia, 2012Google Scholar
  48. 48.
    H.C. Kwong, M.S. Rakesh, C.S. Chidan Kumar, S.R. Maidur, P.S. Patil, C.K. Quah, Y.-F. Win, C. Parlak, S. Chandraju, Structure–property relation and third-order nonlinear optical studies of two new halogenated chalcones. Z. Kristallogr. 233, 349–360 (2018)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Parutagouda Shankaragouda Patil
    • 1
    Email author
  • Shivaraj R. Maidur
    • 1
  • Jitendra R. Jahagirdar
    • 2
  • Tze Shyang Chia
    • 3
  • Ching Kheng Quah
    • 3
  • Mohd Shkir
    • 4
  1. 1.Department of PhysicsK.L.E. Institute of TechnologyHubballiIndia
  2. 2.Department of PhysicsShri Siddeshwar Government First Grade College and PG Study CenterNaragund, GadagIndia
  3. 3.X-ray Crystallography Unit, School of PhysicsUniversiti Sains MalaysiaPenangMalaysia
  4. 4.Advanced Functional Materials and Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia

Personalised recommendations